首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of bi-fluorescence-labeled maltooligosaccharides that lead to fluorescence resonance energy transfer (FRET) was systematically synthesized. Effective FRETs were observed with all of the synthesized probes. Digestion of probes having tetra-, quintet-, hexa- or hepta-saccharidic chain lengths with human saliva α-amylase resulted in disappearance of FRET when an excitation wavelength of at 290nm was used followed by detection at ca. 520nm due to emission from the dansyl moiety. However, continuous FRET was observed when probes having di- or trisaccharidic chain lengths were used as substrates. In addition to the substrate characteristics based on saccharidic chain length, the reaction rates of digestion for the substrates by amylase were different and also depended on their saccharidic chain length.  相似文献   

2.
The effect of apolipoprotein C-II (apoC-II) on the bovine milk lipoprotein lipase (LpL)-catalyzed hydrolysis of a homologous series of saturated phosphatidylcholines was examined with respect to the fatty acyl chain length of the substrates. Dilauryl-, dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholine solubilized by Triton X-100 and sonicated vesicles of dimyristoylphosphatidylcholine were used as substrates. The maximal rate of the LpL-catalyzed hydrolysis of each of these lipids was determined in the absence and presence of apoC-II. The activation factor (the ratio of enzyme activity with apoC-II to that without the activator protein) increased with increasing mol ratios of apoC-II to LpL and was maximal at a ratio of approximately 50. At all apoC-II/LpL mole ratios tested, the activation factor increased as a function of fatty acyl chain length. A quantitative relationship between fatty acyl chain length and the extent of maximal activation of LpL by apoC-II was observed: the logarithm of the activation factor is a linear function of the number of carbon atoms of a single fatty acyl chain of the substrates.  相似文献   

3.
【目的】系统鉴定哈氏弧菌脂酰-ACP合成酶(Acyl-ACP synthetase,Aas S)以不同链长游离脂肪酸和非脂肪链羧酸作为底物的体外催化反应。【方法】利用非变性蛋白质凝胶电泳和紫外分光光度计法从定性和定量两个方面分析了Aas S的体外催化功能与活性。【结果】Aas S能够催化不同链长直链的自由脂肪酸合成脂酰-ACP,其中以C6–C12作为底物时活性最高;以羟基脂肪酸作为底物的情况下,Aas S催化C8–C14的羟基脂肪酸有较高的活性。非脂肪链羧酸类作为底物的反应中,20种蛋白质氨基酸、苯甲酸和水杨酸均可以作为Aas S的底物,合成相应的脂酰-ACP。【结论】本研究系统地证明了哈氏弧菌脂酰-ACP合成酶(Aas S)对不同底物的不同催化活性,为生物体内氨基酸代谢和菌黄素合成代谢的研究提供了可行性的分析依据。  相似文献   

4.
The purpose of this work was to study the catalytic properties of rat butyrylcholinesterase with benzoylcholine (BzCh) and N-alkyl derivatives of BzCh (BCHn) as substrates. Complex hysteretic behaviour was observed in the approach to steady-state kinetics for each ester. Hysteresis consisted of a long lag phase with damped oscillation. The presence of a long lag phase, with no oscillations, in substrate hydrolysis by rat butyrylcholinesterase was also observed with N-methylindoxyl acetate as substrate. Hysteretic behaviour was explained by the existence of two interconvertible butyrylcholinesterase forms in slow equilibrium, while just one of them is catalytically active. The damped oscillations were explained by the existence of different substrate conformational states and/or aggregates (micelles) in slow equilibrium. Different substrate conformational states were confirmed by 1H-NMR. The K(m) values for substrates decreased as the length of the alkyl chain increased. High affinity of the enzyme for the longest alkyl chain length substrates was explained by multiple hydrophobic interactions of the alkyl chain with amino acid residues lining the active site gorge. Molecular modelling studies supported this interpretation; docking energy decreased as the length of the alkyl chain increased. The long-chain substrates had reduced k(cat) values. Docking studies showed that long-chain substrates were not optimally oriented in the active site for catalysis, thus explaining the slow rate of hydrolysis. The hydrolytic rate of BCH12 and longer alkyl chain esters vs. substrate concentration showed a premature plateau far below V(max). This was due to the loss of substrate availability. The best substrates for rat butyrylcholinesterase were short alkyl homologues, BzCh - BCH4.  相似文献   

5.
Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked.  相似文献   

6.
展示酶的酵母细胞作为全细胞催化剂,既具有固定化酶的优点,又有制备简单、成本较低的特点。本研究将细胞表面展示南极假丝酵母脂肪酶B(Candida antarctica lipase B,CALB)的重组毕赤酵母用于非水相中催化合成短链芳香酯,通过滴定和气相色谱的方法测定底物酸的转化率,从底物的碳链长度、醇的结构、酵母冻干粉的添加量、底物浓度及底物的酸醇摩尔比等方面考察了展示CALB的毕赤酵母全细胞催化合成短链芳香酯的特性。研究结果表明:该全细胞催化剂可催化C10以下的酸和醇直接酯化合成多种短链芳香酯,酸的转化率达到90%以上;其中己酸和乙醇为酶的最适底物;酵母冻干粉的添加量20g/L(306.0U/g-drycell)、己酸浓度0.8mol/L、酸醇摩尔比1:1.1是合成己酸乙酯的最佳条件。在此条件下反应1.5h,己酸的转化率达到97.3%。在现有的关于脂肪酶非水相催化合成短链芳香酯的报道中,该全细胞催化剂显示出较好的底物耐受性以及较高的催化反应速率。因此,展示CALB的毕赤酵母全细胞催化剂在合成短链芳香酯方面具有较大的商业化应用潜能。  相似文献   

7.
The molecular basis of chain length specificity of Candida rugosa lipase 1 was investigated by molecular modeling and site-directed mutagenesis. The synthetic lip1 gene and the lipase mutants were expressed in Pichia pastoris and assayed for their chain length specificity in single substrate assays using triglycerides as well as in a competitive substrate assay using a randomized oil. Mutation of amino acids at different locations inside the tunnel (P246F, L413F, L410W, L410F/S300E, L410F/S365L) resulted in mutants with a different chain length specificity. Mutants P246F and L413F have a strong preference for short chain lengths whereas substrates longer than C10 are hardly hydrolyzed. Increasing the bulkiness of the amino acid at position 410 led to mutants that show a strong discrimination of chain lengths longer than C14. The results obtained can be explained by a simple mechanical model: the activity for a fatty acid sharply decreases as it becomes long enough to reach the mutated site. In contrast, a mutation at the entrance of the tunnel (L304F) has a strong impact on C4 and C6 substrates. This mutant is nevertheless capable of hydrolyzing chain lengths longer than C8.  相似文献   

8.
Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of,the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (+/-)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.  相似文献   

9.
Pig liver esterase was separated into isoenzyme fractions with known subunit compositions. The fractions showed differences in enantiotopic ester group selectivity in hydrolysis of two substrates of synthetic value, benzylmethylpropanedioic acid dimethyl ester and cis-N-benzyl-2,5-bismethoxy-carbonylpyrrolidine. A difference in aliphatic chain length specificity between the isoenzyme fractions was also observed. The results indicate that pig liver esterase cannot be regarded as homogeneous when used in organic synthesis.  相似文献   

10.
Close agreement between rates of condensation and overall chain elongation have been observed with eight octadecadienoic isomers in which the double bonds were moved from the 4,7- to the 11,14-positions. The specific activities for overall chain elongation of 7,10-and 6,9-octadecadienoic acids were, respectively, 5.20 and 2.89 nmol product min?1 mg?1 rat liver microsomal protein, while the specific activities for the other six isomers were all below 0.84. The specific activities for both the β-hydroxyacyl-CoA dehydrase and 2-trans-enoyl-CoA reductase reactions were measured using the appropriate substrates required in chain elongating 5,8-, 7,10-, and 8,11-octadecadienoic acids. Although these rates were not as markedly influenced by structural modification, they were all much greater than the initial reaction thus implicating condensation as rate limiting. Both 7- and 9-octadecenoic acids were poor substrates for overall chain elongation even though both 6,9- and 7,10-octadecadienoic acids readily condensed with malonyl-CoA. The rate of overall elongation increased for 7,10-unsaturated acids as the chain length of the primer was extended from 14- to 18-carbons, however, 7,10-eicosadienoic acid was virtually inactive. When rates of overall chain elongation were measured with an isomeric series of six octadecatrienoic acids in which the double bonds were shifted from the 4,7,10- to the 9,12,15-positions, only the 5,8,11-, 6,9,12-, and 7,10,13-isomers were readily chain elongated. Again, as with the octadecadienoic acid isomers the best substrate had the first double bond at position 7. Again the rate of chain elongation was chain length dependent since both 5,8,11- and 7,10,13-eicosatrienoic acid were chain elongated at lower rates than were their 18 carbon analogs. When the substrates were grouped according to common terminal structures no single feature was identifiable which dictated whether a primer would readily be chain elongated. Our findings are thus most consistent with a high degree of substrate specificity for condensation which involves carboxyl recognition but is also dictated both by chain length, double-bond positions, and degree of unsaturation.  相似文献   

11.
The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.  相似文献   

12.
The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis (kcat = 2.5 s-1) while 5- and 10-position substitutions of the folate molecule impair catalysis. kcat values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. The on rates for most pteroyldiglutamates are similar to the rates for their respective monoglutamate derivatives, but further extension of the glutamate chain results in a progressive decrease in on rates. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The Km for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and beta,gamma-methylene-ATP, beta,gamma-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P1,P5-di(adenosine-5') pentaphosphate, and free ATP4- are potent inhibitors of the reaction.  相似文献   

13.
Organosilane compounds are easily coated onto metal and oxide substrates to form protective coatings. In this contribution we consider the intrinsic stability of these films using the surfaces of iron to define 2D arrangements of the molecules within a film. Molecular dynamics simulation is used to analyse the packing energy and structure of the resulting films for two example organosilane molecules differing in chain length. The longer chain is found to form structures with higher absolute values of the packing energy.  相似文献   

14.
Outer membrane phospholipase A (OMPLA) is a unique, integral membrane enzyme found in Gram-negative bacteria and is an important virulence factor for pathogens such as Helicobacter pylori. This broad-specificity lipase degrades a variety of lipid substrates, and it plays a direct role in adjusting the composition and permeability of bacterial membranes under conditions of stress. Interestingly, OMPLA shows little preference for the lipid headgroup and, instead, the length of the hydrophobic acyl chain is the strongest determinant for substrate selection by OMPLA, with the enzyme strongly preferring substrates with chains equal to or longer than 14 carbon atoms. The question remains as to how a hydrophobic protein like OMPLA can achieve this specificity, particularly when the shorter chains can be accommodated in the binding pocket. Using a series of sulfonyl fluoride inhibitors with various lengths of acyl chain, we show here that the thermodynamics of substrate-induced OMPLA dimerization are guided by the acyl chain length, demonstrating that OMPLA uses a unique biophysical mechanism to select its phospholipid substrate.  相似文献   

15.
To separate the interfacial and catalytic reactions of lecithin cholesterol acyltransferase (LCAT), we carried out the first investigation of its reaction with water-soluble substrates. We used a continuous spectrophotometric assay for the hydrolysis of p-nitrophenyl esters of fatty acids to determine the chain length specificity of the enzyme and its modulation by anions and apolipoproteins in solution. By chemical modification of amino acid residues, we demonstrated that the active site serine and histidine residues participate in both the esterase and acyltransferase reactions but that cysteine residues are not involved in the esterase reaction. The kinetics of the LCAT reaction were measured for p-nitrophenyl esters of fatty acids having up to six (C-6) carbons in length. With increasing acyl chain lengths the optimal reaction rates occurred for the C-5 ester and Km and Vmax values decreased progressively, while the specificity constant, kcat/Km, increased. The same series of substrates and longer chain esters, up to C-16, were also reacted with LCAT in the presence of Triton X-100 in order to determine the general trends for the reaction rates as a function of chain length. The observed trends for the reaction rates and kinetic constants were attributed to an increasing binding affinity for the longer acyl chains in a large hydrophobic cavity, with a concomitant restriction in the motions of the substrates and a decreased probability for the correct positioning of the ester bond for hydrolysis, resulting in a decreased substrate turnover. Since the kinetics of the interfacial reactions of LCAT are very sensitive to the presence of anions and apolipoproteins, in particular apoA-I, we investigated the effects of these modulators on the reactions of LCAT in solution. Unlike the interfacial reactions, the hydrolysis of the p-nitrophenyl esters was not affected by 0.1 M concentrations of anions nor by water-soluble apolipoproteins (apoA-I, apoA-II, and apoCs). Thus the regulation of the activity of LCAT is mediated largely by the interfaces on which it acts.  相似文献   

16.
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as well as nanometer-scale resolution of individual GAG chain conformation and spacing. Fetal aggrecan core protein trace length (398+/-57 nm) and end-to-end length (257+/-87 nm) were both larger than that of mature aggrecan (352+/-88 and 226+/-81 nm, respectively). Similarly, fetal aggrecan GAG chain trace length (41+/-7 nm) and end-to-end (32+/-8 nm) length were both larger than that of mature aggrecan GAG (32+/-5 and 26+/-7 nm, respectively). GAG-GAG spacing along the core protein was significantly smaller in fetal compared to mature aggrecan (3.2+/-0.8 and 4.4+/-1.2nm, respectively). Together, these differences between the two aggrecan types were likely responsible for the greater persistence length of the fetal aggrecan (110 nm) compared to mature aggrecan (82 nm) calculated using the worm-like chain model. Measured dimensions and polymer statistical analyses were used in conjunction with the results of Western analyses, chromatographic, and carbohydrate electrophoresis measurements to better understand the dependence of aggrecan structure and properties on its constituent GAG chains.  相似文献   

17.
Pig liver esterase was separated into isoenzyme fractions with known subunit compositions. The fractions showed differences in enantiotopic ester group selectivity in hydrolysis of two substrates of synthetic value, benzylmethylpropanedioic acid dimethyl ester and cis-N-benzyl-2,5-bismethoxy-carbonylpyrrolidine. A difference in aliphatic chain length specificity between the isoenzyme fractions was also observed. The results indicate that pig liver esterase cannot be regarded as homogeneous when used in organic synthesis.  相似文献   

18.
The availability of homogeneous samples of the potassium salts of L- and D-octan-2-yl sulphate has enabled the separation of the optically stereospecific CS1 and CS2 secondary alkysulphohydrolases from extracts of cells of Comamonas terrigena. The CS2 enzyme was purified to homogeneity, and an initial study was made of its general properties, specificity, cellular localization and relationship to the CS1 enzyme. The CS2 enzyme has a molecular weight of approx. 250000 and a subunit size of approx. 58000, indicating that the molecule is a tetramer. Under the experimental conditions used the enzyme appears to be specific for (+)-secondary alkyl sulphate esters with the sulphate group at C-2 and with a chain length of at least six carbons. Enzyme activity towards racemic C-2 sulphates increases with increasing chain length up to C10, and there is some indirect evidence to suggest that activity declines when that chain length is exceeded. Other indirect evidence confirms that the CS1 enzyme exhibits similar specificity, except that only (-)-isomers can serve as substrates. Both enzymes are present in broth-grown stationary-phase cells of C. terrigena in approximately equal amounts.  相似文献   

19.
The activity of lipases from Rhizopus delemar, Rhizopus arrhizus, and Penicillium simplicissimum entrapped in microemulsions formulated by bis-(2-ethylhexyl)sulfo-succinate sodium salt (AOT) in isooctane has been studied in esterification reactions of various aliphatic alcohols with fatty acids. The effect of the nature of the fatty acids (chain length) and of the alcohols (primary, secondary, or tertiary; chain length; cyclic structures) on the lipase activities was investigated in relation to the reverse micellar structure. The lipases tested showed a selectivity regarding the structure of the substrates used when hosted in the AOT/isooctane microemulsion systems. Penicillium simplicissimum lipase showed higher reaction rates in the esterification of long chain alcohols as well as secondary alcohols. Primary alcohols had a low reaction rate and tertiary a very slow rate of esterification. Long chain fatty acids were better catalyzed as compared to the shorter ones. Rhizopus delemar and R. arrhizus lipases showed a preference for the esterification of short chain primary alcohols, while the secondary alcohols had a low rate of esterification and the tertiary ones could not be converted. The reaction of medium chain length fatty acids was also better catalyzed than in the case of the long ones. The observed lipase selectivity appeared to be related to the localization of the enzyme molecule within the micellar microstructure due to the hydrophobic/hydrophilic character of the protein. The reverse micellar structural characteristics, as well as the localization of the enzyme, were examined by fluorescence quenching measurements and spectroscopical studies. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
Abstract

The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号