首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population structure of Magnaporthe oryzae from green foxtail (Setaria viridis) in Japan was examined by DNA fingerprint analyses using the transposable elements MGR586 and MAGGY as probes. Fifteen M. oryzae isolates from green foxtail were collected from 11 Japanese prefectures so that a macrogeographic population of this pathogen is represented. All the 15 isolates were sorted into distinct haplotypes by DNA fingerprint analyses with both probes. Furthermore, similarities between the DNA fingerprint profiles of the 15 isolates were exclusively low; i.e., if lineages are arbitrarily established based on greater than 70% similarities in isolates, the 15 isolates could be categorized into 13 distinct lineages by DNA fingerprinting with both probes. We also examined the MGR586 DNA fingerprint variations of this pathogen in 9 microgeographic populations each of which contained 20 to 24 isolates collected from a 1 m2 or 50 m2 area. In all the 9 populations, more than 2 haplotypes, which shared less than 70% similarities, were identified in the DNA fingerprint profiles. These results suggested that M. oryzae isolates from the green foxtail in Japan possessed a complex lineage structure, even at the microgeographic scale.  相似文献   

2.
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   

3.
    
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   

4.
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec.  相似文献   

5.
Previous studies on Toxoplasma gondii population structure, based essentially on multilocus restriction fragment length polymorphism analysis or on multilocus enzyme electrophoresis, indicated that T. gondii comprises three clonal lineages. These studies showed a weak polymorphism of the markers (2-4 alleles by locus). In this study, we used eight microsatellite markers to type 84 independent isolates from humans and animals. Two microsatellite markers were present in the introns of two genes, one coding for beta-tubulin and the other for myosin A, and six were found in expressed sequence tags. With 3-16 alleles detected, these markers can be considered as the most discriminating multilocus single-copy markers available for typing T. gondii isolates. This high discriminatory power of microsatellites made it possible to detect mixed infections and epidemiologically related isolates. Evolutionary genetic analyses of diversity show that the T. gondii population structure consists of only two clonal lineages that can be equated to discrete typing units, but there is some evidence of occasional genetic exchange that could explain why one of these discrete typing units is less clearly individualised than the other.  相似文献   

6.
Genotypic or phenotypic markers for characterization of natural populations of marine microalgae have typically addressed questions regarding differentiation among populations, usually with reference to a single or few clonal isolates. Based upon a large number of contemporaneous isolates from the same geographical population of the toxigenic species Alexandrium tamarense from the North Sea, we uncovered significant genetic substructure and low but significant multilocus linkage disequilibrium (LD) within the planktonic population. Between the alternative molecular genotyping approaches, only amplified fragment length polymorphism (AFLP) revealed cryptic genetic population substructure by Bayesian clustering, whereas microsatellite markers failed to yield concordant patterns. Both markers, however, gave evidence for genetic differentiation of population subgroups as defined by AFLP. A considerable portion of multilocus LD could be attributed to population subdivision. The remaining LD within population subgroups is interpreted as an indicator of frequency shifts of clonal lineages during vegetative growth of planktonic populations. Phenotypic characters such as cellular content and composition of neurotoxins associated with paralytic shellfish poisoning (PSP) and allelochemical properties may contribute to intra- or inter-annual differentiation of planktonic populations, if clonal lineages that express these characters are selectively favoured. Nevertheless, significant phenotypic differentiation for these characters among the genetically differentiated subgroups was only detected for PSP toxin content in two of the four population subgroups. By integrating the analysis of phenotypic and genotypic characteristics, we developed a conceptual population genetic model to explain the importance of life-cycle dynamics and transitions in the evolutionary ecology of these dinoflagellates.  相似文献   

7.
Many species of fungal plant pathogens coexist as multiple lineages on the same host, but the factors underlying the origin and maintenance of population structure remain largely unknown. The rice blast fungus Pyricularia oryzae is a widespread model plant pathogen displaying population subdivision. However, most studies of natural variation in P. oryzae have been limited in genomic or geographic resolution, and host adaptation is the only factor that has been investigated extensively as a contributor to population subdivision. In an effort to complement previous studies, we analyzed genetic and phenotypic diversity in isolates of the rice blast fungus covering a broad geographical range. Using single-nucleotide polymorphism genotyping data for 886 isolates sampled from 152 sites in 51 countries, we showed that population subdivision of P. oryzae in one recombining and three clonal lineages with broad distributions persisted with deeper sampling. We also extended previous findings by showing further population subdivision of the recombining lineage into one international and three Asian clusters, and by providing evidence that the three clonal lineages of P. oryzae were found in areas with different prevailing environmental conditions, indicating niche separation. Pathogenicity tests and bioinformatic analyses using an extended set of isolates and rice varieties indicated that partial specialization to rice subgroups contributed to niche separation between lineages, and differences in repertoires of putative virulence effectors were consistent with differences in host range. Experimental crosses revealed that female sterility and early post-mating genetic incompatibilities acted as strong additional barriers to gene flow between clonal lineages. Our results demonstrate that the spread of a fungal pathogen across heterogeneous habitats and divergent populations of a crop species can lead to niche separation and reproductive isolation between distinct, widely distributed, lineages.  相似文献   

8.
The poor definition of pathotype variation in the rice blast fungus has historically handicapped strategies for reducing blast disease damage to the world's rice crop. We have employed a probe for a dispersed repeated DNA sequence called MGR [Hamer et al. (1989). Proc. Natl. Acad. Sci. USA 86, 9981-9985] to construct genotype-specific, EcoRl restriction fragment length profiles (MGR-DNA fingerprints) from United States field isolates of this fungus. By using a blind-test design, we demonstrated that MGR-DNA fingerprints distinguished the major pathotypes in the United States, accurately identified the pathotypes of isolates collected over a 30-year period, and defined the organization of clonal lineages within and among pathotype groups. These results resolved a lingering controversy regarding rice blast pathotype stability and illustrated new opportunities for tracking the population dynamics and evolution of this important crop pathogen.  相似文献   

9.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

10.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

11.
The population structure of Magnaporthe grisea, the causal agent of the rice blast, was analyzed in Mazandaran province, using DNA fingerprinting based on RAPD-PCR by means of three primers including "I", "D" and "H". Total DNA of 47 isolates was extracted and amplified according to a specific PCR program. As a result, variable length fragments were generated. Each isolate was subjected to DNA fingerprinting and clonal lineages were determined. Phenetic analysis differentiated three distinct fingerprint lineages. In order to study on fertility status and distribution of the mating type idiomorphs (alleles), 72 monoconidial isolates from Mazandaran province were paired with four standard fertile hermaphrodite isolates. The mating type of 36 isolates was determined as Mat 1-1. The others (36 isolates) did not form any perithecia in pairing with standard isolates  相似文献   

12.
Phytophthora capsici causes significant loss to pepper (Capsicum annum) in China and our goal was to develop single nucleotide polymorphism (SNP) markers for P. capsici and characterize genetic diversity nationwide. Eighteen isolates of P. capsici from locations worldwide were re-sequenced and candidate nuclear and mitochondrial SNPs identified. From 2006 to 2012, 276 isolates of P. capsici were recovered from 136 locations in 27 provinces and genotyped using 45 nuclear and 2 mitochondrial SNPs. There were two main mitochondrial haplotypes and 95 multi-locus genotypes (MLGs) identified. Genetic diversity was geographically structured with a high level of genotypic diversity in the north and on Hainan Island in the south, suggesting outcrossing contributes to diversity in these areas. The remaining areas of China are dominated by four clonal lineages that share mitochondrial haplotypes, are almost exclusively the A1 or A2 mating type and appear to exhibit extensive diversity based on loss of heterozygosity (LOH). Analysis of SNPs directly from infected peppers confirmed LOH in field populations. One clonal lineage is dominant throughout much of the country. The overall implications for long-lived genetically diverse clonal lineages amidst a widely dispersed sexual population are discussed.  相似文献   

13.
Francisella noatunensis subsp. orientalis (FNO) is an important emerging pathogen associated with disease outbreaks in farm-raised Nile tilapia. FNO genetic diversity using PCR-based typing, no intra-species discrimination was achieved among isolates/strains from different countries, thus demonstrating a clonal behaviour pattern. In this study, we aimed to evaluate the population structure of FNO isolates by comparing whole-genome sequencing data. The analysis of recombination showed that Brazilian isolates group formed a clonal population; whereas other lineages are also supported by this analysis for isolates from foreign countries. The whole-genome multilocus sequence typing (wgMLST) analysis showed varying numbers of dissimilar alleles, suggesting that the Brazilian clonal population are in expansion. Each Brazilian isolate could be identified as a single node by high-resolution gene-by-gene approach, presenting slight genetic differences associated to mutational events. The common ancestry node suggests a single entry into the country before 2012, and the rapid dissemination of this infectious agent may be linked to market sales of infected fingerlings.  相似文献   

14.
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii . The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii , but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.  相似文献   

15.
Yersinia ruckeri is the causative agent of enteric redmouth in fish and one of the major bacterial pathogens causing losses in salmonid aquaculture. Previously typing methods, including restriction enzyme analysis, pulsed-field gel electrophoresis and multilocus enzyme electrophoresis (MLEE) have indicated a clonal population structure. In this work, we describe a multilocus sequence typing (MLST) scheme for Y.ruckeri based on the internal fragment sequence of six housekeeping genes. This MLST scheme was applied to 103 Y.ruckeri strains from diverse geographic areas and hosts as well as environmental sources. Sequences obtained from this work were deposited and are available in a public database (http://publmst.org/yruckeri/). Thirty different sequence types (ST) were identified, 21 of which were represented by a single isolate, evidencing high genetic diversity. ST2 comprised more than one-third of the isolates and was most frequently observed among isolates from trout. Two major clonal complexes (CC) were identified by eBURST analysis showing a common evolutionary origin for 94 isolates forming 21 STs into CC1 and for 6 isolates of 6 STs in the CC2. It was also possible to associate some unique ST with isolates from recent outbreaks in vaccinated salmonid fish.  相似文献   

16.
从80个随机引物中筛选到带型清晰、多态性及重复性均好的10个引物,对采自广东省1998-1999年四个自然生态稻作区的101个稻瘟病菌菌株进行随机扩增多态性DNA (Random Amplified Polymorphic DNA, RAPD) 指纹分析。10个引物共扩增出113条多态性带,表明广东省稻瘟病菌具有丰富的遗传多样性;RAPD分析可为该菌的遗传多样性分析提供大量的分子标记。对菌株间相似性系数和应用加权算术平均组对法 (Unweighted Pair Group Method using Arithmetic Average, UPGMA) 构建的聚类树状图进行分析,以相似性系数为0.62阀值时,可将101个菌株划分为14个遗传宗谱;其中宗谱1及宗谱2的菌株数占总数的80.2%,为优势宗谱; 其余的20个菌株分别归属于其他12个宗谱,由此说明广东省的稻瘟病病原菌群体既存在很突出的优势宗谱,又存在较多具遗传多样性的小宗谱。分析不同稻作生态区的菌株发现,每个稻作生态区既有共同的宗谱,又有其特异的宗谱;广东省稻瘟病菌群体遗传多样性的组成在不同生态稻作区是相对地比较稳定的。分析不同年份和早晚稻生长季节采集的菌株发现,广东省稻瘟病菌群体遗传多样性在年份和早晚稻生长季节之间也存在一定的特异性。  相似文献   

17.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

18.
Apicomplexan protozoan parasites include some of the most globally important human and animal pathogens, all of which have obligatory sexual cycles in their definitive hosts. Despite their importance and the relevance of understanding the population genetic structure and role of genetic exchange in generating diversity, population genetic analysis has largely been restricted to Plasmodium spp. and Toxoplasma gondii. These species show a considerable diversity of population structure suggesting different strategies for transmission and survival in mammalian hosts. We have undertaken a population genetic analysis of a further apicomplexan species (Cryptosporidium parvum) to extend our understanding of the diversity of genetic structures and test whether it has a clonal population structure. Nothing is known about the population structure of this parasite. We have analyzed 180 parasite isolates from both humans and cattle derived from a single discrete geographical area, using three minisatellite and four microsatellite markers that define 38 multilocus genotypes. Analysis of linkage disequilibria between pairs of loci combined with measures of genetic distance and similarity provides evidence that the sample comprises four genetically isolated populations. One group of human isolates consists primarily of two closely related multilocus genotypes (clonal), while the major subtypes of a second group, common to both humans and animals, show a panmictic population structure. The data provide an important step in understanding the role of genetic exchange in these parasites, which is an essential prerequisite for determining the value of multilocus genotyping for the analysis of sources of human infection as well as future molecular epidemiological studies.  相似文献   

19.
水稻品种多样性田间稻瘟病菌群体遗传结构分析   总被引:4,自引:0,他引:4  
利用稻瘟病菌的一段倒位重复序列Pot2设计的一对引物,采用rep—PCR分子指纹技术对来自石屏县净种杂交稻田块、净种糯稻田块以及间种杂交稻糯稻田间的251个稻瘟病单孢分离菌株进行扩增.结果表明,所有供试菌株均分别扩增到9—17条DNA带,大小从400bp到23kb左右,但大多数带主要集中在5—10kb之间.所有菌株共扩增出的DNA指纹带中,约65%的为多态性DNA带,35%的为共同扩增带.将供试菌株扩增带诺进行聚类分析,比较间裁与净载田间病菌群体遗传结构的组成差异结果表明,在不同遗传相似水平,菌株遗传宗群复杂度与栽培方式有一定相关性。间栽田间病菌遗传宗群较净栽田问复杂,为3—5个,且优势宗群群不明显;而在净栽糯稻或净栽杂交稻田间遗传宗群较为简单,只有1—3个,且优势宗群明显.本试验结果证明水稻品种多样性有利于稻瘟病菌稳定化选择。  相似文献   

20.
Genetic data are often crucial for designing management strategies for rare and endangered species. Ziziphus celata is an endangered sandhill shrub endemic to the Lake Wales Ridge of central Florida. This self-incompatible clonal species is known from only 14 wild populations, most of which are small (under 100 plants). Focusing on the five populations discovered in 2007, we evaluate the level of genetic diversity and identify clonal lineages within the wild populations of the species with a set of microsatellite loci. To account for somatic mutations and genotyping errors, we identified clonal lineages using a threshold cutoff for pair-wise genetic distances among samples. The microsatellites had up to 18 alleles/locus, and, consistent with outcrossing, samples were highly heterozygous (average population level H o  = 0.69). Most populations of Z. celata consist of a single clone, and the most diverse population has only 10 clones. Overall Z. celata comprises 41 multi-locus genotypes, and 30 clonal lineages. With nearly 1,000 recorded plants (595 genotyped) and only 30 clonal lineages, Ziziphus celata is highly clonal: clonal richness, R = 0.049. The pair-wise distance method facilitates identification of clonal lineages, avoiding overestimation of clonal diversity. In most cases, the samples that grouped into a lineage were one to four plants differing from a surrounding genotype by a single microsatellite repeat insertion/deletion mutation, consistent with these having arisen via somatic mutations. Our data will enable managers to incorporate extant diversity from wild populations into ex situ collections. Additionally, our research demonstrates the utility of microsatellites for conservation of imperiled species, identifying genotypes of high priority for preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号