首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Effects of sodium chloride and sodium sulphate on the content of some organic and inorganic constituents in the leaves of pigeonpea (Cajanus cajan L. Var. C-11) were studied. Increased water content under saline conditions made the leaves succulent. The concentration of reducing sugars appeared to be higher while that of total sugars and starch was lower. The plants also failed to accumulate proline at higher salinity levels. Phosphorus and potassium content were lowered while those of calcium, magnesium, sodium, chloride and sulphate were increase under both salinities. This indicates that there is no regulation on the uptake of latter elements under saline conditions.  相似文献   

2.
Inputs of surface waters high in chloride and sulphateincreased the availability of nutrients in fenpeatlands. This `internal eutrophication' wasdemonstrated with test plants (`phytometers') andthrough water and soil analysis. Three experiments arepresented in which the level of chloride and/orsulphate was increased to 3 mmolc l–1. Inexperiment 1 chloride levels were increased from 0.5to 3 mmolc l–1 as CaCl2 or NaCl. Inexperiment 2 and 3 similar increased levels forchloride and sulphate (3 mmolc l–1; as NaCland Na2SO4) were used. The following resultswere found:(i) No differences in soil total-N and total-P werefound before and after the treatments in any of thethree experiments.(ii) Experiment 1 showed a significant increase inBio-Available P (BAP) in pots planted with Anthoxanthum odoratum as well as in bare pots for theNaCl and CaCl2 treatments. The plants in thesetreatments had taken up much more P.(iii) Experiment 2 showed an increase in soil BAPafter treatment with chloride and sulphate in potsplanted with Anthoxanthum odoratum. The chloridetreatment had no effect on plant biomass, whereas thesulphate treatment resulted in a reduction in rootbiomass and root N and P content. The shoots showedan increase in P content in the sulphate and chloridetreatments, while N content remained the same.(iv) In experiment 3, treatments with chloride andsulphate led to significantly increased biomass and Puptake of Anthoxanthum odoratum. Again, noeffects on N uptake were found.These experiments provide evidence for distinctlyincreased availability of phosphate in peat soils whenthese come into contact with water with evenmoderately increased sulphate or chloride levels.Surface water originating from the Rhine river, whichis enriched in chloride and sulphate, is oftensupplied to fen reserves in The Netherlands, tocompensate for water losses due to agriculturaldrainage in the region. The results of this study showthat phosphate availability to the vegetation may risedrastically, with detrimental effects on the speciesdensity and the occurrence of rare species in thevegetation. Hence, supply of this water should beavoided.  相似文献   

3.
Lemna minor L. was grown in aseptic culture solutions. With sodium chloride or lithium chloride in the solution, the plant increased in yield. Tolerance of Lemna minor to relatively high level of sodium explains the presence of this plant in brackish waters. A low quantity of potassium is required for optimal growth. Sodium was added to nutrient solutions as chloride or sulphate. At equivalent levels the sodium content of the plant was somewhat higher under sulphate salinity.  相似文献   

4.
Osmotic and ionic regulatory ability were examined in the giant freshwater prawn, Macrobrachium rosenbergii in response to varying salinities. In freshwater, and under conditions of low salinity, hemolymph osmolality was maintained around 450 mOsm. Under high salinity, osmolality values increased in a time-wise manner until reaching levels of the surrounding rearing water. Changes in sodium concentration generally paralleled osmotic change, and potassium and magnesium concentrations increased upon exposure to extremely high salinity. In contrast, total calcium concentration was maintained at high levels regardless of salinity treatment. Examination of crystalline structure and ionic composition of the cuticle revealed that it was comprised principally of an α-chitin-like material, and calcite (calcium carbonate). Calcite accounted for 25% of total bulk weight in freshwater, while sodium, potassium and magnesium constituents combined comprised less than 2.5% of this total. Although sodium, potassium and magnesium contents increased nearly 2-fold in response to changing salinity, calcium levels remained relatively constant.  相似文献   

5.
THE EFFECTS OF SODIUM CHLORIDE ON HIGHER PLANTS   总被引:6,自引:0,他引:6  
(1) This review concentrates on the effect of sodium chloride on the growth of higher plants, being primarily concerned with relatively high concentrations i.e. 50 mmol 1-1 and above, though something is also said about those instances when sodium acts as a micronutrient. Emphasis is placed on particular species or genera for which enough information is available to discuss possible mechanisms. (2) Trace amounts of sodium are required for the growth of plants using the C4 pathway of carbon fixation and may also be important in plants with Crassulacean acid metabolism. (3) The increased growth of Beta vulgaris brought about by sodium chloride can in part be explained by a sparing effect on potassium. However, growth is still increased when sufficient potassium is available. Complementary studies with rubidium indicate that the hormone balance in the plant may be changed. Sodium chloride also increases the level of sucrose in storage roots and allows beet plants to withstand water stress more readily, possibly by increased turgor pressure. (4) Sodium chloride increases production of dry matter in C4 species of Atriplex under conditions of low relative humidity because water loss is reduced and photo-synthesis hardly affected. (5) Succulence in many plants is stimulated by salinity. The essential basis of the phenomenon is an increased water potential gradient between the leaf and the external medium. In some instances, it is the accumulation of chloride which is important; in others it is the accumulation of cations, when potassium can be as effective as sodium. (6) Salinity reduces the final area achieved by growing leaves. Most of the studies have been made on Phaseolus vulgaris and an important early event is the reduction in the rate of expansion of the epidermal cells and this may be accompanied by a decrease in their number. Reduction of epidermal cell size is a result of water stress; sodium chloride may directly affect cell division, though water stress cannot be ruled out. Whether salinity brings about inhibition of cell division depends upon the calcium content of the medium – a high content is accompanied solely by a reduction in epidermal cell size. (7) Hormones, as yet unspecified, may play an important part in response of a growing leaf to salinity. However, there is no evidence that sodium chloride per se has an effect on hormone balance within the plant. So far, any measured changes in levels of specific hormones can be ascribed to the osmotic effects of the saline medium. (8) Two estimates by flux analysis of cytoplasmic concentration of sodium in plants growing in conditions of high salinity give a value of around 150 mmol 1-1. There is no similar information for chloride. Other techniques (histochemistry and X-ray micro-probe analysis) give questionable information. (9) There is now extensive information to show that enzymes of halophytes (other than ATPases) do not differ significantly from those of other higher plants with respect to their sensitivity in vitro to sodium chloride. There is a need for further work with respect to the activity of enzymes in the presence of those metabolites which have the highest cytoplasmic concentration. (10) Sodium-stimulated ATPases have been isolated from plant cells but their distribution amongst higher plants is restricted. (11) There are a number of reports of changed metabolism brought about by saline treatments but it is not clear how far the effects of sodium chloride and water stress are confounded. (12) Sodium appears to increase the sucrose levels in sugar beet by an inhibitory effect on product starch-granule-bound ADP-glucose starch synthase. (13) Reversal of a sodium pump located at the plasmalemma might have an effect on cell turgor. (14) Sodium (like other monovalent cations) causes loss of materials from plant cells, possibly through an effect on carrier proteins; calcium prevents this from happening. Calcium also allows plants to grow better in saline conditions by a depression of sodium uptake by and transport within the plant. The properties and composition of the membranes of mesophytes and halophytes need to be compared. (15) A saline medium exerts a major effect on plant growth through water stress to which a halophyte must adapt. As well as this, the cytoplasmic concentration of sodium chloride must be kept lower than the total cellular concentration of the salt. Unless this happens, it is likely that enzymic activity will be reduced due, in some instances, to an unspecific effect of a high concentration of monovalent cations and/or chloride and in other instances to competition between sodium and other cations, specifically potassium, for activation sites on enzymes, e.g. pyruvate kinase. (16) Further work is required to separate the osmotic effects from the specific effect of sodium chloride after it has entered the plant. As well as this, it has become clear that more information is needed about the mineral nutrition of halophytes.  相似文献   

6.
Various regimes of predominantly chloride and sulphate salinity reduced chlorophyll (Chl) (a +b) content and net photosynthetic rate (Pn) in two cultivars ofCicer arietinum L. However, the rate of respiration (Rd) was stimulated up to 6 dS m-1 of salinity and thereafter it declined with increase in salinity levels. Chloride salinity was more detrimental than the sulphate one as far as Chl (a +b) and Pn were concerned, but RD was reduced more under sulphate salinity in cv. H-75-35 especially in 110 d-old plants. The cultivar L-144 was relatively more salt sensitive than the cv. H-75-35.  相似文献   

7.
Drought and salinity are two major limiting factors in crop productivity. One way to reduce crop loss caused by drought and salinity is to increase the solute concentration in the vacuoles of plant cells. The accumulation of sodium ions inside the vacuoles provides a 2-fold advantage: (i) reducing the toxic levels of sodium in cytosol; and (ii) increasing the vacuolar osmotic potential with the concomitant generation of a more negative water potential that favors water uptake by the cell and better tissue water retention under high soil salinity. The success of this approach was demonstrated in several plants, where the overexpression of the Arabidopsis gene AtNHX1 that encodes a vacuolar sodium/proton antiporter resulted in higher plant salt tolerance. Overexpression of AtNHX1 increases sodium uptake in vacuoles, which leads to increased vacuolar solute concentration and therefore higher salt tolerance in transgenic plants. In an effort to engineer cotton for higher drought and salt tolerance, we created transgenic cotton plants expressing AtNHX1. These AtNHX1-expressing cotton plants generated more biomass and produced more fibers when grown in the presence of 200 mM NaCl in greenhouse conditions. The increased fiber yield was probably due to better photosynthetic performance and higher nitrogen assimilation rates observed in the AtNHX1-expressing cotton plants as compared with wild-type cotton plants under saline conditions. Furthermore, the field-grown AtNHX1-expressing cotton plants produced more fibers with better quality, indicating that AtNHX1 can indeed be used for improving salt stress tolerance in cotton.  相似文献   

8.
Annexins belong to a multigene family of Ca2+ dependent, phospholipid and cytoskeleton binding proteins. They have been shown to be upregulated under various stress conditions. We generated transgenic cotton plants expressing mustard annexin (AnnBj1), which showed enhanced tolerance towards different abiotic stress treatments like sodium chloride, mannitol, polyethylene glycol and hydrogen peroxide. The tolerance to these treatments was associated with decreased hydrogen peroxide levels and enhanced total peroxidase activity, enhanced content of osmoprotectants- proline and sucrose in transgenic plants. They showed higher retention of total chlorophyll and reduced TBARS in leaf disc assays with stress treatments, and decreased hydrogen peroxide accumulation in the stomatal guard cells when compared to their wild type counterparts. They also showed significantly enhanced fresh weight, relative water content, dry weight under stress. Treatment with sodium chloride resulted in enhanced expression of genes for ∆-pyrroline-5-carboxylase synthetase in leaves, and sucrose phosphate synthase, sucrose synthase and cellulose synthase A in the leaves and fibers of transgenic plants. The transgenic plants maintained normal seed development, fiber quality and cellulose content under stress.  相似文献   

9.
Mozambique tilapia, Oreochromis mossambicus, born and raised in five salinities, viz. (relatively soft) fresh water, 25, 50, 75% and full-strength sea-water, were analyzed for ionoregulatory performance (in particular sodium and calcium handling) and growth. This tilapia regulates its blood serum mineral composition rather effectively; however, in sea-water serum concentrations of sodium, chloride and calcium (in males only) were increased, as was the serum osmolarity. In sea-water, the total body sodium pool was significantly enlarged. With increasing salinity, sodium turnover increased. Serum calcium levels and the total body calcium pool were more strictly controlled than those of sodium. The lowest density of chloride cells in opercular epithelium and the lowest branchial Na+-K+-ATPase activity were observed in 50% sea-water; these values were higher in fish kept in waters of lower or higher salinities. Fish grew more rapidly in brackish water. Fish kept in brackish water appeared to depend on food-related calcium for growth as branchial calcium uptake provides no more than 20% of growth related Ca-accumulation.  相似文献   

10.
Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves.  相似文献   

11.
Alpaslan  M.  Gunes  A. 《Plant and Soil》2001,236(1):123-128
A greenhouse study was conducted in order to determine interactive effects of NaCl salinity and B on the growth, sodium (Na), chloride (Cl), boron (B), potassium (K) concentrations and membrane permeability of salt resistant Tomato (Lycopersicon esculentum L. cv. Lale F1) and salt sensitive cucumber (Cucumis sativus L. cv. Santana F1) plants. Plants were grown in a factorial combination of NaCl (0 and 30 mM for cucumber and 0 and 40 mM for tomato) and B (0, 5, 10 and 20 mg kg–1 soil). Boron toxicity symptoms appeared at 5 mg kg–1 B treatments in both plants. Salinity caused an increase in leaf injury due to B toxicity, but it was more severe in cucumber. Dry weights of the plants decreased with the increasing levels of applied B in nonsaline conditions, but the decrease in dry weights due to B toxicity was more pronounced in saline conditions especially in cucumber. Salinity × B interaction on the concentration of B in both plants was found significant. However, increase in B concentrations of tomato decreased under saline conditions when compared to nonsaline conditions. Contrary to this, B concentration of cucumber increased as a result of increasing levels of applied B and salinity. Salinity increased Na and Cl concentrations of both plants.Potassium concentration of tomato was not affected by salinity and B treatments, but K concentration of cucumber was decreased by salinity. Membrane permeability of the plants was increased by salinity while toxic levels of B had no effect on membrane permeability in nonsaline conditions. Membrane permeability was significantly increased in the presence of salinity by the increasing levels of applied B.  相似文献   

12.
Diploid and autotetraploid plants of the cultivated tomato Lycopersicon esculentum cv. Lukullus (Luk) were studied under low and high salinity. Polyploids had a higher water content than diploid plants. Water content in both plant types decreased under salinity, the decrease being smaller in the polyploid plants. Dry weight of whole young plants decreased in both diploid and polyploid plants under salinity, the decrease being smaller in the latter. Transpiration of whole plants, grown in control solution, was lower in polyploid than in diploid plants and decreased more under salinity in the latter. Rate of change of water loss of detached drying leaves was similar in diploid and polyploid plants. Leaves of control diploid plants, however, lost more water per unit leaf area during the phase of stomatal closure apparently due to higher stomatal density. Polyploid plants had fewer but more open stomata per unit leaf area, under both control and saline conditions. Root pressure, determined only under control conditions, seemed to be higher in polyploid plants. No difference in Cl? concentration per unit leaf dry weight was found between diploid and polyploid plants grown in either control or NaCl solution.  相似文献   

13.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acid-reactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.  相似文献   

14.
Summary Arthrocnemum fruticosum (L.)Moq., a halophyte from the shore of the Dead Sea in Jordan was grown in a greenhouse with nutrient solution supplemented with various concentrations of NaCl. It was shown that with increasing salinity the plants became more succulent, mainly due to an accumulation of sodium and water. Sodium was taken up into the roots in equal amounts to chloride, but in the shoots far more sodium than chloride was found, suggesting a control of these ions either in the excretion into the xylem, or in the uptake by the shoot out of the xylem. Ammonium and nitrate in the plants decreased with time on nutrient solution more or less independently of the salt concentration. However, more nitrate appeared again in the plants when they started flowering. After an initial period of adaptation the nitrate reductase activityin vivo was not inhibited by a salinity of up to 2%, but at higher NaCl concentrations a shift of nitrate reductase activity occurred from the roots to the shoots. This was consistent with earlier observations in the field. In the vegetative phase of the plants the nitrate reductase in the roots was influenced by the soil water potential, but in the shoot it was mainly dependent on the supply of nitrate from the roots. High NaCl concentrations delayed flower initiation. During flowering the nitrate reductase was involved in the re-allocation of nitrogenous compounds from the roots to the developing flowers, and it became effectively independent from salinity.  相似文献   

15.
Summary A normally grown crop of sunflower on red sandy loam soils was found to remove considerable quantities of chloride and sodium. On heavy clay soils with saline patches sunflower plants removed large quantities of sodium followed by chloride and sulphate. In view of its salt tolerance, it is suggested that intercropping or rotation with sunflower might help reduce soil salinity and improve soil conditions where salinity problems are coming up especially in heavy clay soils with low permeability. re]19720711  相似文献   

16.
The effect of 15, 25, and 35°C root temperature on waterabsorption, transpiration, and sulphate uptake by the rootsand transport to the shoots of intact sunflower plants has beenstudied using 0.5, 5.0, and 50.0 mM sulphate concentrationsat two rates of transpiration induced (1) by light and low relativehumidity and (2) by darkness and high relative humidity. Root temperatures and sulphate concentrations did not significantlyaffect the water absorption and transpiration and both theseprocesses were approximately similar at the different treatments.There was a nearly twofold increase in water absorption andtranspiration in the light and low relative humidity as comparedto the dark and high relative humidity irrespective of the roottemperatures and sulphate concentrations. The A.F.S. uptake in the roots was found to be independent ofthe root temperatures, sulphate concentrations, and transpirationrates, and amounted to 15 to 21 per cent based on the root weight.Sulphate accumulation in the roots was not significantly influencedby the root temperatures at 0.5 and 5.0 mM sulphate concentrations,but nearly doubled with temperature at 50.0 mM sulphate concentrationof the external solution. The slow nature of accumulation ofsulphate, the high sulphate status of the experimental plants,and the short duration of the experiments are considered aslikely reasons for the absence of a clear effect of temperatureson accumulation of sulphate at the two lower concentrationsof the external solution. Effects of high concentration on permeabilityand metabolism of the cells are suggested as the reasons forthe decreased accumulation with an increase in temperature at50.0 mM sulphate concentration. Accumulation of sulphate inthe roots was not significantly influenced by the transpirationrates. Unlike root accumulation, sulphate transport to the shoots increasedwith increasing transpiration. However, a major part of thesulphate transport (70 to 75 per cent at 0.5 and 5.0 mM sulphateconcentrations and 80 to 85 per cent at 50.0 mM sulphate concentration)appeared to have occurred at the low transpiration. The similarityof this transport to the accumulation of sulphate in the rootsindicates that it was due to an active transport process sensitiveto root temperatures and sulphate concentrations. A low concentrationof sulphate in the xylem and an increased permeability of theroot cells to ion movement induced by an increased suction inthe xylem are considered as reasons for a small increase inthe sulphate transport at high transpiration rate. The evidencefor the existence of a barrier—probably endodermis—preventingthe passive diffusion of sulphate and sensitivity of the TranspirationStream Concentration to root temperatures and sulphate concentrationsfavour that the increased transport with increased transpirationwas due to an active process.  相似文献   

17.
1. In this study we compared the emergence of aquatic biota from sediments under 14‐day pulses of high (5000 mg L−1) and low (1000 mg L−1) salinity with emergence under freshwater and equivalent constant salinity levels. We tested the hypothesis that pulses of high salinity and short duration have no impact on the emergence of aquatic plants and zooplankton from wetland sediment. 2. The way salt is moved through the landscape may alter the response of biota to increases in salinity. Under natural hydrological regimes in rivers and floodplains salinity pulses occur often at concentrations that exceed predicted tolerance levels for aquatic biota. The impacts of natural pulses of high salinity followed by rapid return to fresh conditions may be used to inform management guidelines for the potential release of non‐natural saline water into river systems with minimal impact. 3. For both aquatic plants and zooplankton the abundance and richness of the emerging taxa decreased at higher salinities kept at constant levels. In contrast, pulses of salinity followed by return to freshwater conditions did not have a negative impact on the emergence of aquatic plants or zooplankton. For many taxa of zooplankton a positive impact was demonstrated with higher emergence following the salinity pulse. 4. The responses of aquatic plant and zooplankton taxa are grouped into five response types. Type 1: negatively impacted by all salt regimes. Type 2: preference for constant salinities. Type 3: no difference between fresh and either pulse regime. Type 4: preference for high concentration pulses. Type 5: emergence higher under a low concentration pulse. 5. Although previous studies indicate that constant high‐level salinity in rivers and wetlands can decrease the species richness of aquatic communities, this current study shows pulses may not have the same impact. Our results support the hypothesis that pulses of high salinity and short duration do not impact on the emergence of aquatic plants and zooplankton from wetland sediments. For zooplankton, pulses of salt may trigger emergence. 6. These trends may be used to explore the potential to use managed water releases to move salt through the landscape with minimal impact of salinity on aquatic biota. However, before such preliminary results are applied in management of saline water releases we need to determine the implications for interacting processes in natural ecosystems.  相似文献   

18.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

19.
A pot culture experiment was performed to evaluate salt tolerance potential ofSesbania aculeata Poir. The plant can tolerate salinity levels up to electrical conductivity (ECe), 10 mS cm?1 and at 15 mS cm?1 thero is about 40% reduction in dry matter production. The analysis of inorganic constituents in different plant parts revealed that the plant has the capacity to regulate sodium uptake under saline conditions and chloride uptake always exceeded that of sodium. The potassium: sodium ratio is also maintained at a fairly constant level in leaflets while it is reduced in leaf rachis, stem and roots. Salt stress caused accumulation of calcium and magnesium in all plant parts. A considerable decline in phosphorus uptake was observed due to salinity. Iron was found to be accumulated more in salt stressed roots only. Nitrogen accumulated in both roots and leaves while considerable proline accumulation was observed in leaves of salt stressed plants. The amount of soluble sugars was increased in roots and leaves due to salt stress, while starch content of roots decreased. Those changes induced by salinity are discussed in relation to salt tolerance capacity of the plant.  相似文献   

20.
A study has been made of the osmotic responses of the green intertidal alga, Ulva lactuca, under two fluctuating salinity regimes; sinusoidal and square-wave fluctuations between 30 and 100% sea water in a 12 h cycle. These regimes closely resemble the tidal fluctuation of salinity encountered by the alga in its natural estuarine habitat. Data on changes in the inorganic ions, potassium, sodium, chloride and sulphate; in the organic solute, dimethylsulphoniopropionate; in the total sugar levels and estimated osmotic and turgor pressures under the two salinity regimes are reported. Significant differences in the solute responses under these different conditions were detected. In general, better control of ion fluxes appeared to be exercised under the sinusoidal conditions which also buffered changes in dimethylsulphoniopropionate levels. Influxes of potassium were highly light-dependent. Chloride levels conspicuously failed to reach the steady-state levels in the 6-h-hyper-osmotic part of either the abrupt or gradual cycle. The possible significance of these data, which may better reflect osmotic changes in the natural environment, and some of the problems encountered, particularly in accounting for charge balance under some conditions, are discussed.Abbreviations DSMP 3-(dimethylsulphonio)propionate - FW fresh weight  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号