首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-solid medium was used to isolate an aerobic, N2-fixing (C2H2-reducing), H2-utilizing bacterium from the roots of kallar grass ( Leptochloa fusca ). The organism was identified by morphological, cultural and biochemical characteristics. The N2-fixing, zoogloeal floc-forming isolate described here is a new species.  相似文献   

2.
The activities of nitrate reductase and glutamine synthetase were evaluated in young plants of Faidherbia albida , a tropical woody legume, fed with different N sources under hydroponic conditions. Results showed that assimilation of both NO3 and NH4+ preferentially took place in shoots. A basal amount of nitrate reductase activity was detected in shoots of plants grown with an NO3-free solution or placed under N2-fixing conditions, and also in nodules of N2-fixing plants. This strongly suggests that constitutive nitrate reductase activity is present in these organs. Analyses of the soluble nitrogenous content showed that the major form of N in the different organs was α-amino acids (particularly amides), irrespective of the N status of the culture conditions. The same result was obtained for nodulated plants grown in local sandy soil. In this case, amide-N generally accounted for more than 40% of the total soluble N. This was especially true in nodules. Ureide-N never exceeded 9% of the total soluble N and did not appear to increase with increasing nodule nitrogenase activity. Amides were also predominant in three N2-fixing Sahelian acacias ( Acacia seyal , A. nilotica and A. tortilis ), showing that F. albida does not differ from Sahelian Acacia in terms of the metabolism of fixed N. However, like another Sahelian acacia growing preferentially near water ( A. nilotica ), F. albida can be distinguished from acacias growing strictly in arid zones ( A. seyal and A. tortilis ) in terms of initial growth, water and nitrate management.  相似文献   

3.
Abstract A new N2-fixing unicellular cyanobacterium identified as a Synechococcus sp. was isolated and purified as an axenic culture. It fixed N2 aerobically either under continuous illumination or in alternating light-dark cycle. The N2-fixing properties of the new isolate and Gloeocapsa are discussed.  相似文献   

4.
δ15N and total nitrogen content of above- and belowground tissues of 13 plant species from two successional stages (open pioneer community and ruderal grass stage) of a dry acidic grassland in Southern Germany were analysed, in order to evaluate whether resource use partitioning by niche separation and N input by N2-fixing legumes are potential determinants for species coexistence and successional changes. Within each stage, plants from plots with different legume cover were compared. Soil inorganic N content, total plant biomass and δ15N values of bulk plant material were significantly lower in the pioneer stage than in the ruderal grass community. The observed δ15N differences were rather species- than site-specific. Within both stages, there were also species-specific differences in isotopic composition between above- and belowground plant dry matter. Species-specific δ15N signatures may theoretically be explained by (i) isotopic fractionation during microbial-mediated soil N transformations; (ii) isotopic fractionation during plant N uptake or fractionation during plant–mycorrhiza transfer processes; (iii) differences in metabolic pathways and isotopic fractionation within the plant; or (iv) partitioning of available N resources (or pools) among plant groups or differential use of the same resources by different species, which seems to be the most probable route in the present case. A significant influence of N2-fixing legumes on the N balance of the surrounding plant community was not detectable. This was confirmed by the results of an independent in situ removal experiment, showing that after 3 years there were no measurable differences in the frequency distribution between plots with and without N2-fixing legumes.  相似文献   

5.
1. Increasing carbon dioxide concentration (E: 680 μl CO2 litre–1 vs ambient, A: 355 μl CO2 litre–1) around late-successional Alpine sedge communities of the Swiss Central Alps (2450 m) for four growing seasons (1992–1995) had no detectable effect on symbiotic N2 fixation in Trifolium alpinum —the sole N2-fixing plant species in these communities (74 ± 30 mg N m–2 year–1, A and E plots pooled).
2. This result is based on data collected in the fourth growing season showing that elevated CO2 had no effect on Trifolium above-ground biomass (4·4 ± 1·7 g m–2, A and E plots pooled, n = 24) or N content per unit land area (124 ± 51 mg N m–2, A and E pooled), or on the percentage of N Trifolium derived from the atmosphere through symbiotic N2 fixation (%Ndfa: 61·0 ± 4·1 across A and E plots) estimated using the 15N dilution method.
3. Thus, it appears that N inputs to this ecosystem via symbiotic N2 fixation will not be dramatically affected in the foreseeable future even as atmospheric CO2 continues to rise.  相似文献   

6.
Abstract: Long-term (14 days) carbon costs of N2 fixation were studied in pot trials. For this purpose the CO2 release from the root space of nodulated and non-nodulated (urea nourished) Vicia faba L. and Pisum sativum L. plants was compared and related to the amount of fixed or assimilated N. Additional measurements of shoot CO2 exchange and dry matter increment were carried out in order to calculate the overall carbon balance. The carbon costs for N2 fixation in Vicia faba 1. (2.87 mg C/mg NfiX) were higher than in Pisum sativum L. (2.03 mg C/mg Nfix). However, the better carbon efficiency in Pisum sativum 1. did not lead to a better growth performance compared to Vicia faba L. Vicia faba L. compensated for the carbon and energy expenditure by more intensive photosynthesis in the N2-fixing treatment. This was not the case with Pisum sativum L., where the carbon balance indicates that the carbon costs of N2 fixation restricted root growth. It is proposed that low carbon costs for N2 fixation indicate an adaptation to a critical carbon supply of roots and nodules, e.g., during the pod-filling of grain legumes.  相似文献   

7.
Abstract: Nitrogen mineralization rate was studied in grazing trials with three different stocking rates (0, 3, 10 sheep ha-1) in two man-made salt marshes, viz. a Puccinellia maritima -dominated low salt marsh and a high salt marsh dominated by Festuca rubra. Mineralization rates were derived from the amounts of mineral N which accumulated in situ during six-week incubation periods in tubes containing undisturbed soil cores from the upper 10 cm soil layer. The annual rates of net N mineralization were significantly higher in the better drained, high salt marsh (71 - 81 kg ha-1 yr-1) than in the low salt marsh (39 - 49 kg ha-1 yr-1). High amounts of belowground litter accumulated in the low salt marsh due to frequent water logging. Both N mineralization and nitrification rate were negatively correlated with soil water content. In the Puccinellia maritima salt marsh, grazing had neither an effect on N mineralization rates during any of the incubation periods nor on annual mineralization rates. In the Festuca rubra salt marsh, N mineralization rates increased earlier during spring at the intensively grazed site than at the moderately grazed and the ungrazed site. N mineralization and nitrification rates were significantly higher at the ungrazed site than at the intensively grazed site during the period of peak net N mineralization from the end of April until mid-June. Although sheep grazing affected the seasonal pattern of N mineralization in the high marsh, grazing did not affect the annual rate of net N mineralization.  相似文献   

8.
The nodulation status and nodule morphology of 62 taxa of Leguminosae in a rain forest in French Guiana are reported according to the taxonomy of the family. The N2-fixing species are then fitted into 'functional groups' according to their behaviour towards illumination, in order to evaluate their importance in the global dynamics of the stand. The results showed that 67% of the observed species were nodulated (50, 71 and 77% of the Caesalpiniaceae, Mimosaceae and Papilionaceae, respectively). In the Caesalpiniaceae, nodule-like structures were reported in the genus Crudia and in the species Senna quinquangulata , although this needs to be confirmed. All the nodules studied in this subfamily were astragaloid and mucunoid. In the Mimosaceae, the ability of a new genus ( Balizia ) to form nodules was reported, as well as nodulation on aerial roots in Inga stipularis . The nodules studied were mainly mucunoid. In the Papilionaceae, nodulation on aerial roots in Poecilanthe hostmannii and on conventional roots of the genus Paramachaerium were reported for the first time. All types of nodular structures were found in this subfamily but the structures were quite uniform at the tribal level. These are consistent with suggestions that nodule morphology has a taxonomic value. Eight functional groups of N2-fixing species are proposed, ranging from light dependance to shade tolerance. These results indicate the important role played by N2-fixing species in the global dynamics of the stand and that N inputs by N2 fixation were continuous along the gradient of energetic resources that characterizes the silvigenetic process. The interactions between the photosynthetic capacities of the species and the ability to fix N2 in low light conditions are discussed.  相似文献   

9.
Abstract Polyamines were analyzed in 12 of N2-fixing aerobic eubacteria and other eubacteria, cyanobacteria, algae and ferns. sym -Homospermidine (homospermidine) was found to be widely distributed as a major polyamine in various N2-fixing eubacteria which belong to Azospirillum, Agromonas, Beijerinckia, Bradyrhizobium, Rhizobium and Xathnbacter . 3 species of Azotobater contained spermidine but not homospermidine, though they are N2-fixing eubactera. Homospermidine is also distributed in some eubacteria, i.e., the photosynthetic Rhodopseudomanas rutila and the sulfur-oxidizing Thiobacillus denitrificans , a cyanobacterium, Synechococcus sp., and in the cyanobacterium-symbiotic ferns, Azolla imbircatta and Azolla japonica .  相似文献   

10.
Interactive effects of elevated atmospheric CO2 and arbuscular mycorrhizal (AM) fungi on biomass production and N2 fixation were investigated using black locust ( Robinia pseudoacacia ). Seedlings were grown in growth chambers maintained at either 350 μmol mol−1 or 710 μmol mol−1 CO2. Seedlings were inoculated with Rhizobium spp. and were grown with or without AM fungi. The 15N isotope dilution method was used to determine N source partitioning between N2 fixation and inorganic fertilizer uptake. Elevated atmospheric CO2 significantly increased the percentage of fine roots that were colonized by AM fungi. Mycorrhizal seedlings grown under elevated CO2 had the greatest overall plant biomass production, nodulation, N and P content, and root N absorption. Additionally, elevated CO2 levels enhanced nodule and root mass production, as well as N2 fixation rates, of non- mycorrhizal seedlings. However, the relative response of biomass production to CO2 enrichment was greater in non-mycorrhizal seedlings than in mycorrhizal seedlings. This study provides strong evidence that arbuscular mycorrhizal fungi play an important role in the extent to which plant nutrition of symbiotic N2-fixing tree species is affected by enriched atmospheric CO2.  相似文献   

11.
The effects of Bradyrhizobium japonicum inoculation and pre-plant additions of N fertilizer on soybean ( Glycine max L. Merrill) yields and levels of N2 fixation were studied under field conditions at two sites in Thailand. Bacterial inoculants were composed of B. japonicum strains selected for high N2 fixation levels in Thai soils. Nitrogen fertilizer addition rates used were from 0 to 250 kg N/ha in 50 kg N/ha increments. At the Chiang Mai site in northern Thailand, bacterial inoculation increased nodule weights on plants receiving 100 kg N/ha or less. Increases in nodule parameters due to inoculation were evident at 45 d after planting (DAP) but disappeared by 60 DAP. Addition of N fertilizers decreased the incidence of nodulation and sap ureide contents and decreased the contribution of N2 fixation to the N content of plants at maturity as measured by N-15 isotope dilution methods. At the Kampang Saen site in central Thailand, bacterial inoculation had significant positive effects on nodule numbers and weights, ARA, sap ureide contents and levels of N2 fixed as measured by N-15 isotope dilution methods. Addition of N fertilizers at this site also reduced the effectiveness of N2-fixing symbioses. It was concluded that small additions of N fertilizer added before planting did not significantly decrease N2 fixation levels, but did have a significant positive effect on plant growth. Larger N additions would reduce N2 fixation levels in excess of the benefits of adding more N in chemical form.  相似文献   

12.
We tested the hypothesis that lichen species with a photosynthetic CO2-concentrating mechanism (CCM) use nitrogen more efficiently in photosynthesis than species without this mechanism. Total ribulose bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) and chitin (the nitrogenous component of fungal cell walls), were quantified and related to photosynthetic capacity in eight lichens. The species represented three modes of CO2 acquisition and two modes of nitrogen acquisition, and included one cyanobacterial ( Nostoc ) lichen with a CCM and N2 fixation, four green algal ( Trebouxia ) lichens with a CCM but without N2 fixation and three lichens with green algal primary photobionts ( Coccomyxa or Dictyochloropsis ) lacking a CCM. The latter have N2-fixing Nostoc in cephalodia. When related to thallus dry weight, total thallus nitrogen varied 20-fold, chitin 40-fold, Chl a 5-fold and Rubisco 4-fold among the species. Total nitrogen was lowest in three of the four Trebouxia lichens and highest in the bipartite cyanobacterial lichen. Lichens with the lowest nitrogen invested a larger proportion of this into photosynthetic components, while the species with high nitrogen made relatively more chitin. As a result, the potential photosynthetic nitrogen use efficiency was negatively correlated to total thallus nitrogen for this range of species. The cyanobacterial lichen had a higher photosynthetic capacity in relation to both Chl a and Rubisco compared with the green algal lichens. For the range of green algal lichens both Chl a and Rubisco contents were linearly related to photosynthetic capacity, so the data did not support the hypothesis of an enhanced photosynthetic nitrogen use efficiency in green-algal lichens with a CCM.  相似文献   

13.
Abstract: Four microbial mat-forming, non-axenic, strains of the non-heterocystous, filamentous, cyanobacterial genus Microcoleus were maintained in culture and examined for the ability to fix atmospheric nitrogen (N2). Each was tested for nitrogenase activity using the acetylene reduction assay (ARA) and for the presence of the dinitrogenase reductase gene ( nifH ), an essential gene for N2 fixation, using the polymerase chain reaction (PCR). The Microcoleus spp. cultures were incapable of growth without an exogenous nitrogen source and never exhibited nitrogenase activity. Attempts to amplify a 360-bp segment of the nifH gene using DNA purified from the cyanobacterial cultures did not produce any cyanobacteria-specific nifH sequences. However, several non-cyanobacterial homologous nifH sequences were obtained. Phylogenetic analysis showed these sequences to be most similar to sequences from heterotrophic bacteria isolated from a marine microbial mat in Tomales Bay (California, USA), and bulk DNA extracted from a cryptobiotic soil crust in Moab (Utah, USA). Microcoleus spp. dominated the biomass of both systems. Cyanobacteria-specific 16S rDNA sequences obtained from the cultured cyanobacterial strains demonstrate that the lack of cyanobacteria-specific nifH sequences was not due to inefficiency of extracting Microcoleus DNA. Hence, both the growth and genetic data indicate that, contrary to earlier reports, Microcoleus spp. appear incapable of fixing N2 because they lack at least one of the requisite genes for this process. Furthermore, our study suggests epiphytic N2-fixing bacteria form a diazotrophic consortium with these Microcoleus spp. and are likely key sources of fixed N2 generated within soil crusts and marine microbial mats.  相似文献   

14.
Red clover, Trifolium pratense L., is the dominant forage legume in Sweden and is usually harvested twice per year, once in June and once in August. Two 15N-based methods –15N isotopic dilution (ID) and 15N natural abundance (NA) – were used to study N2 fixation from spring until first harvest in late June, from first to second harvest in late August, and from second harvest until first frost in autumn in Umeå, Sweden. The material studied comprized three neighbouring fields carrying a first year ley, a second year ley and a third year ley. For the 15N ID method, small amounts of highly enriched 15N-nitrate were added to experimental plots. The non-legumes in the plots, essentially Phleum pratense L. together with Festuca pratensis L., served as reference plants for both the ID and 15N NA measurements. Dry matter, N and 15N were separately analysed in leaves (laminae), stems (including petioles), stubble and roots. The proportion of N derived from air (pNdfa) was then calculated for each plant part and for whole plants. Estimates of the proportion of N derived from N2 fixation (pNdfa) were always very high, usually ≥0.8. Generally, estimates of pNdfa obtained by the ID and NA methods were similar, but the ID method gave higher estimates of pNdfa than the NA method when the highest N2 fixation levels were recorded, at the August harvest. Regression analyses suggest that estimates of pNdfa in leaves could provide useful indications of pNdfa in shoots and whole T. pratense plants, thus avoiding the need for time-consuming root analyses.  相似文献   

15.
Photosynthetic oxygen evolution within Sesbania rostrata stem nodules   总被引:1,自引:0,他引:1  
The tropical wetland legume, Sesbania rostrata Brem. forms N2-fixing nodules along its stem and on its roots after infection by Azorhizobium caulinodans . The N2-fixing tissue is surrounded by a cortex of uninfected cells which, in the stem nodules (but not the root nodules), contain chloroplasts. The photosynthetic competence of these chloroplasts was assessed through a novel technique involving image analysis of chlorophyll a fluorescence. Calculation of the quantum efficiency of photosystem II (PS II) photochemistry from these images indicated that most of the chloroplasts with potential for non-cyclic photosynthetic electron transport were concentrated within the mid- and inner-cortex, close to the edge of the N2-fixing tissue. PS II activity in the cortical cells was confirmed in vivo using O2-specific microelectrodes which showed that the concentration of O2 (pO2) in the outer cortex could rise from less than 1% up to 23.4% upon increased irradiance of the nodule, but that the pO2 of the inner cortex and infected tissue remained less than 0.0025%. Nitrogenase activity of stem nodules, as measured using a flow-through acetylene reduction assay (no H2 evolution was evident), showed a reversible increase of 28% upon exposure of the nodules to supplemental light. This increase resembled that obtained with stem nodules upon their exposure to an external pO2 of 40%.  相似文献   

16.
In Nostoc muscorum (Anabaena ATCC 27893) glutamate was not metabolised as a fixed nitrogen source, rather it functioned as an inhibitor of growth. The latter effect was nitrogen source specific and occurred in N2-fixing cultures but not in cultures assimilating nitrate or ammonium. NO3--grown cultures lacked heterocysts and nitrogenase activity and showed a nearly 50% reduction in glutamate uptake rates, as well as in the final extent of glutamate taken up, compared to N2-fixing or nitrogen-limited control cultures. NH4+-grown cultures showed a similar response, except that the reduction in glutamate uptake rates and the final exten of glutamate taken up was over 80%. The present results suggest a relation between nitrate/ammounium nitrogen-dependent inhibition of glutamate uptake, probably via repression of the glutamate transport system, and glutamate toxicity.  相似文献   

17.
DNA sequences of an intergenic spacer (IGS) and parts of genes in the nif cluster were amplified by the polymerase chain reaction (PCR) using two primers derived from nifD -and nifK -conserved sequences. The PCR products were cleaved by ten 4–base cutting restriction enzymes and the restriction patterns were used as fingerprints to type Frankia strains. The feasability of this PCR-RFLP method for typing Frankia strains was investigated on Frankia reference strains belonging mainly to the Elaeagnaceae infectivity group but also on new Frankia isolates and on other N2-fixing microorganisms. By modulating the stringency of the amplifications, we showed the method allowed to target either Frankia strains or the whole N2-fixing microbial community. DNA digestion patterns were used to estimate the sequence divergence between the Frankia nifD-K fragment. The estimated relationships deduced from these genotypic data correlated well with established Frankia taxonomic schemes.  相似文献   

18.
In N2-fixing cyanobacteria, the reduction of N2 to NH3 is coupled with the production of molecular hydrogen, which is rapidly consumed by an uptake hydrogenase, an enzyme that is present in almost all diazotrophic cyanobacteria. The cellular and subcellular localization of the cyanobacterial uptake hydrogenase remains uncertain, and it is definitely strain dependent. Previous studies focused mainly on heterocystous cyanobacteria and used heterologous antisera. The present work represents the first effort to establish the subcellular localization of the uptake hydrogenase in a N2-fixing filamentous nonheterocystous cyanobacterium, Lyngbya majuscula CCAP 1446/4, using the first antiserum produced against a cyanobacterial uptake hydrogenase. The data obtained revealed higher specific labelling associated with the thylakoid membranes of L. majuscula , reinforcing the idea that the cyanobacterial uptake hydrogenase is indeed a membrane-bound protein. For comparative purposes, the localization of the uptake hydrogenase was also investigated in two distinct heterocystous cyanobacterial strains, and while in Nostoc sp. PCC 7120 the labelling was only observed in the heterocysts, in Nostoc punctiforme , the presence of uptake hydrogenase antigens was detected in both the vegetative cells and heterocysts, corresponding most probably to an inactive and an active form of the enzyme.  相似文献   

19.
Oxygen and the regulation of nitrogen fixation in legume nodules   总被引:3,自引:0,他引:3  
In N2-fixing legume nodules, O2 is required in large amounts for aerobic respiration, yet nitrogenase, the bacterial enzyme that fixes N2, is O2 labile. A high rate of O2 consumptition and a cortical barrier to gas diffusion work together to maintain a low, non-inhibitory O2 concentration in the central, infected zone of the nodule. At this low O2 concentration, cytosolic leghemoglobin is required to facilitate the diffusion of O2 through the infected cell to the bacteria. The resistance of the cortical diffusion barrier is variable and is used by legume nodules to regulate the O2 concentration in the infected cells such that it limits aerobic respiration and N2 fixation at all times. The resistance of the diffusion barrier and therefore the degree of O2 limitation seems to be regulated in response to changes in the O2 concentration of the central infected zone, the supply of phloem sap to the nodule, and the rate of N assimilation into the end products of fixation.  相似文献   

20.
The anatomical structure of the leaves of Chenopodium album L. and Chenopodium hircinum Schrad. has been examined. Leaf chlorophyll content (Chl), specific leaf area (SLA), specific leaf weight (SLA-1) and nitrogen content (N2) were estimated in both species. Ch1, SLA and N2 were greater in C. album than in C. hircinum. SLA-1 data showed that C. album is more efficient than C. hircinum , because the former invests smaller quantities of dry weight to achieve a square centimetre of leaf area. The possible effects of Chl, N2 and leaf anatomy on efficient gas exchange are discussed. The presence of nyctinastic leaf nocturnal movements was detected in both species. The meaning of this is discussed in relation to the prevention of the loss of pollen grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号