首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Axillary meristems play a fundamental role in inflorescence architecture. Maize (Zea mays) inflorescences are highly branched panicles because of the production of multiple types of axillary meristems. We used auxin transport inhibitors to show that auxin transport is required for axillary meristem initiation in the maize inflorescence. The phenotype of plants treated with auxin transport inhibitors is very similar to that of barren inflorescence2 (bif2) and barren stalk1 (ba1) mutants, suggesting that these genes function in the same auxin transport pathway. To dissect this pathway, we performed RNA in situ hybridization on plants treated with auxin transport inhibitors. We determined that bif2 is expressed upstream and that ba1 is expressed downstream of auxin transport, enabling us to integrate the genetic and hormonal control of axillary meristem initiation. In addition, treatment of maize inflorescences with auxin transport inhibitors later in development results in the production of single instead of paired spikelets. Paired spikelets are a key feature of the Andropogoneae, a group of over 1000 grasses that includes maize, sorghum, and sugarcane. Because all other grasses bear spikelets singly, these results implicate auxin transport in the evolution of inflorescence architecture. Furthermore, our results provide insight into mechanisms of inflorescence branching that are relevant to all plants.  相似文献   

3.
Organogenesis in plants is controlled by meristems. Axillary meristems, which give rise to branches and flowers, play a critical role in plant architecture and reproduction. Maize (Zea mays) and rice (Oryza sativa) have additional types of axillary meristems in the inflorescence compared to Arabidopsis (Arabidopsis thaliana) and thus provide an excellent model system to study axillary meristem initiation. Previously, we characterized the barren inflorescence2 (bif2) mutant in maize and showed that bif2 plays a key role in axillary meristem and lateral primordia initiation in the inflorescence. In this article, we cloned bif2 by transposon tagging. Isolation of bif2-like genes from seven other grasses, along with phylogenetic analysis, showed that bif2 is a co-ortholog of PINOID (PID), which regulates auxin transport in Arabidopsis. Expression analysis showed that bif2 is expressed in all axillary meristems and lateral primordia during inflorescence and vegetative development in maize and rice. Further phenotypic analysis of bif2 mutants in maize illustrates additional roles of bif2 during vegetative development. We propose that bif2/PID sequence and expression are conserved between grasses and Arabidopsis, attesting to the important role they play in development. We provide further support that bif2, and by analogy PID, is required for initiation of both axillary meristems and lateral primordia.  相似文献   

4.
Shoot apical meristems produce organs in a highly stereotypic pattern that involves auxin. Auxin is supposed to be actively transported from cell to cell by influx (AUXIN/LIKE AUXIN proteins) and efflux (PIN-FORMED proteins) membrane carriers. Current hypotheses propose that, at the meristem surface, PIN proteins create patterns of auxin gradients that, in turn, create patterns of gene expression and morphogenesis. These hypotheses are entirely based on work in Arabidopsis (Arabidopsis thaliana). To verify whether these models also apply to other species, we studied the behavior of PIN proteins during maize (Zea mays) development. We identified two novel putative orthologs of AtPIN1 in maize and analyzed their expression pattern during development. The expression studies were complemented by immunolocalization studies using an anti-AtPIN1 antibody. Interestingly, the maize proteins visualized by this antibody are almost exclusively localized in subepidermal meristematic layers. Both tassel and ear were characterized by a compact group of cells, just below the surface, carrying PIN. In contrast to or to complement what was shown in Arabidopsis, these results point to the importance of internally localized cells in the patterning process. We chose the barren inflorescence2 (bif2) maize mutant to study the role of auxin polar fluxes in inflorescence development. In severe alleles of bif2, the tassel and the ear present altered ZmPIN1a and ZmPIN1b protein expression and localization patterns. In particular, the compact groups of cells in the tassel and ear of the mutant were missing. We conclude that BIF2 is important for PIN organization and could play a role in the establishment of polar auxin fluxes in maize inflorescence, indirectly modulating the process of axillary meristem formation and development.  相似文献   

5.
The Relationship between auxin transport and maize branching   总被引:8,自引:2,他引:6  
Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.  相似文献   

6.
The diversity of plant architectural form is largely determined by the extent and duration of axillary meristem (AM) derived lateral growth. The orthologous basic helix-loop-helix (bHLH) proteins maize BARREN STALK1 (BA1) and rice LAX PANICLE1 (LAX1) are essential for the formation of AMs during vegetative development and all lateral structures during inflorescence development, but whether BA1/LAX1 co-orthologs exist outside of the grass family is unclear. Here, we present Bayesian phylogenetic evidence of a well-supported BA1/LAX1 clade comprised monocots and eudicots, estimating an origin for the lineage at least near the base of flowering plants. Genomic analyses in Arabidopsis, papaya, medicago, rice, sorghum, and maize indicate that BA1/LAX1 genes reside in syntenic regions, although there has also been a complex pattern of gene duplication and loss during the diversification of the angiosperm clade. BA1/LAX1 mRNA expression coincided with the initiation of leaves and associated AMs in the vegetative meristems of broccoli, medicago, and papaya implicating a role for the lineage in the formation of AMs in eudicots as well as monocots. Expression on the adaxial surface of lateral inflorescence structures was conserved in all sampled flowering plants, whereas mRNA expression in leaves of Arabidopsis, broccoli, and papaya also links BA1/LAX1 co-orthologs with roles in regulating leaf development, possibly as a downstream target of auxin regulating genes. Together these data point to roles for BA1/LAX1 genes during AM formation, leaf, and inflorescence development in diverse flowering plants and lend support to the hypothesis that the same genetic mechanisms regulate the development of different AM types.  相似文献   

7.
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.  相似文献   

8.
The sparse inflorescence1 (spi1), Barren inflorescence1 (Bif1), barren inflorescence2 (bif2), and barren stalk1 (ba1) mutants produce fewer branches and spikelets in the inflorescence due to defects in auxin biosynthesis, transport, or response. We report that spi1, bif1, and ba1, but not bif2, also function in promoting cell elongation in the inflorescence.  相似文献   

9.
We characterized allelic variation at barren inflorescence2 ( bif2 ), a maize co-ortholog of the Arabidopsis PINOID protein kinase ( PID ), and tested for trait associations with bif2 in both an association mapping population of 277 diverse maize inbreds and in the inter-mated B73 × Mo17 (IBM) linkage population. Results from the quantitative analyses were compared with previous reports of bif2 phenotypes in mutagenesis studies. All three approaches (association, linkage, and mutagenesis) detect a significant effect of bif2 on tassel architecture. Association mapping implicates bif2 in an unexpectedly wide range of traits including plant height, node number, leaf length, and flowering time. Linkage mapping finds a significant interaction effect for node number between bif2 and other loci, in keeping with previous reports that bif2 ; spi1 and Bif2 ; Bif1 double mutants produce fewer phytomers. The Mo17 allele is associated with a reduced tassel branch zone and shows lower expression than the B73 allele in hybrid B73–Mo17 F1 inflorescences, consistent with the complete absence of tassel branches in the bif2 knockout mutant. Overall, these data suggest that allelic variation at bif2 affects maize architecture by modulating auxin transport during vegetative and inflorescence development.  相似文献   

10.
Axillary meristems, which give rise to branches and flowers, play a critical role in plant architecture and reproduction. To understand how axillary meristems initiate, we have screened for mutants with defects in axillary meristem initiation to uncover the genes controlling this process. These mutants, called the barren class of mutants in maize (Zea mays), have defects in axillary meristem initiation during both vegetative and reproductive development. Here, we identify and characterize a new member of the barren class of mutants named Developmental disaster1 (Dvd1), due to the pleiotropic effects of the mutation. Similar to the barren mutants, Dvd1 mutants have fewer branches, spikelets, florets, and floral organs in the inflorescence due to defects in the initiation of axillary meristems. Furthermore, double mutant analysis with teosinte branched1 shows that dvd1 also functions in axillary meristems during vegetative development. However, unlike the barren mutants, Dvd1 mutants are semidwarf due to the production of shorter internodes, and they produce leaves in the inflorescence due to the outgrowth of bract leaf primordia. The suite of defects seen in Dvd1 mutants, together with the genetic interaction of Dvd1 with barren inflorescence2, suggests that dvd1 is a novel regulator of axillary meristem and internode development.  相似文献   

11.
PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem   总被引:13,自引:0,他引:13  
The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation. We show that meristem structure and function are not severely affected in the mutant. Major alterations, however, are observed at the periphery of the pin1 meristem, where organ initiation should occur. Although two very early markers of organ initiation, LEAFY and AINTEGUMENTA, are expressed at the periphery of the mutant meristem, the cells are not recruited into distinct primordia. Instead a ring-like domain expressing those primordium specific genes is observed around the meristem. This ring-like domain also expresses a boundary marker, CUP-SHAPED COTYLEDON 2, involved in organ separation, showing that the zone at the meristem periphery has a hybrid identity. This implies that PIN1 is not only involved in organ outgrowth, but that it is also necessary for organ separation and positioning. A model is presented in which PIN1 and the local distribution of auxin control phyllotaxis.  相似文献   

12.
13.
Plants differ from most animals in their ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems harboring new stem cell niches. In seed plants, this is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Here, we describe the initial processes of Arabidopsis thaliana axillary meristem initiation. Using reporter gene expression analysis, we find that axillary meristems initiate from leaf axil cells with low auxin through stereotypical stages. Consistent with this, ectopic overproduction of auxin in the leaf axil efficiently inhibits axillary meristem initiation. Furthermore, our results demonstrate that auxin efflux is required for the leaf axil auxin minimum and axillary meristem initiation. After lowering of auxin levels, a subsequent cytokinin signaling pulse is observed prior to axillary meristem initiation. Genetic analysis suggests that cytokinin perception and signaling are both required for axillary meristem initiation. Finally, we show that cytokinin overproduction in the leaf axil partially rescue axillary meristem initiation-deficient mutants. These results define a mechanistic framework for understanding axillary meristem initiation.  相似文献   

14.
15.
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.  相似文献   

16.
Sim GE  Loh CS  Goh CJ 《Plant cell reports》2007,26(4):383-393
We have successfully developed a method to induce early in vitro flowering of the self-pollinated seedlings of a tropical orchid hybrid, Dendrobium Madame Thong-In. Transition of vegetative shoot apical meristem to inflorescence meristem was observed when young protocorms were cultured in modified KC liquid medium. In contrast, protocorms cultured on Gelrite-solidified medium only produced axillary shoots and roots. CW was required to trigger the transitional shoot apical meristem and BA enhanced inflorescence stalk initiation and flower bud formation. However, normal flower development was deformed in liquid medium but developed fully upon transferring to two-layered (liquid over Gelrite-solidified) medium. Under optimal condition, in vitro flowering was observed about 5 months after seed sowing. Segregation of flower colours was observed in these seedlings and seedpods formed upon artificial pollination of the in vitro flowers.  相似文献   

17.
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical-basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical-basal position or the identity of the induced structures.  相似文献   

18.
19.
20.
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.

Mutations in a single auxin importer gene uncover broad and unexpected effects in nearly all aspects of the development of shoots, inflorescences, and flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号