首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighteen genes were assigned to chromosomes in the sacred baboon, Papio hamadryas, by their concordant segregation with the chromosomes in a set of baboon X Chinese hamster somatic cell hybrids. ACY1 was assigned to P. hamadryas chromosome 2 (PHA 2); SOD1 and MDH2 to PHA 3; ME1 and SOD2 to PHA 4; NP, MPI, PKM2, and HEXA to PHA 7; PP to PHA 9; ADA and ITPA to PHA 10; LDHB and TPI1 to PHA 11; MDH1 to PHA 13; ESD to PHA 17; and GPI and PEPD to PHA 20. Regional assignments were possible for ACY1 (PHA 2pter----q1) and MDH2 and SOD1 (PHA 3p). Five other independently segregating markers or syntenic groups (PGD, PGM1; and PEPC; PGM2 and PEPS; IDH1; LDHA and ACP2; and GSR) were also identified. Gene assignments and syntenic groups described in P. hamadryas are compared to those found in P. papio, the rhesus monkey, and man. A possible primate model for human lymphoid disease is discussed.  相似文献   

2.
Nineteen cell hybrids were obtained by fusing rabbit (Oryctolagus cuniculus, OCU) fibroblasts and a Chinese hamster cell line HGPRT-. Eleven enzymatic markers were previously investigated (Soulié and Grouchy 1982); seven of these could be assigned (LDHA, LDHB, TPI, PEPB, NP, ITP, and G6PD). Two assignments were uncertain (MDH2 and GUK). Two markers could not be assigned (MDH1 and PGD). Seven further markers were investigated and are the subject of this report. Six could be assigned: GALT to chromosome OCU1, GAPD to OCU4, GPX and ACY to OCU9, PGM1 to OCU13, and GSR to OCU19. One could not be assigned (GPI). MDH2 and GUK were previously considered uncertain. Now MDH2 was found impossible to assign and GUK was mapped on OCU15. These assignments were compared with those known in man, Cebus capucinus, Microcebus murinus, cat, and mouse. It was impossible to assign any enzymatic marker belonging to the ten linkage groups known in the rabbit. The esterase locus could not be investigated since the rabbit enzyme migrates in the same position as the hamster enzyme.  相似文献   

3.
Summary Nineteen cell hybrids were obtained by fusing rabbit (Oryctolagus cuniculus, OCU) fibroblasts and a Chinese hamster cell line HGPRT. Eleven enzymatic markers were investigated for cosegregation analysis. Seven could be assigned to OCU chromosomes: LDHA to OCU1; LDHB and TPI to OCU4; PEPB, NP, and ITP to OCU16; and G6PD to OCUX. Two assignments were considered possible: MDH2 to OCU15, and GUK to OCU3 or 15. Two could not be assigned: MDH1 and PGD. These results are consistent with the OCU-HSA chromosome homocologies previously reported, except for PEPB.  相似文献   

4.
Genetics and linkage analysis of 6-phosphogluconate dehydrogenase (6-PGD) and malate dehydrogenase (MDH) have been investigated in Anopheles stephensi. Both these markers were found to be autosomal and linked and have been assigned to linkage group III. Two mutant markers, Black larva (Bl) and golden-yellow larva (gy), were used to establish the map distances, and the current sequence of loci on chromosome 3 is as follows: Bl (3.75)-gy (14.53)-Mdh-2 (49.83)-6-pgd.  相似文献   

5.
Eight new gene assignments were demonstrated in the baboon (Papio papio, PPA) by cosegregation analysis of twelve hybrid clones obtained by fusion between PPA fibroblasts and a mouse cell line deficient in thymidine kinase. The following markers and syntenic groups were assigned: SOD1 to PPA3, GLO-ME1 to PPA-4, PGM2 to PPA5, CKBB-SORD to PPA7, LDHB to PPA11 and LDHA to PPA14. These localizations are in agreement wit hthe following homoeologies with the human karyotype: PPA3-HSA21, PPA4-HSA6, PPA5-HSA4, PPA7-HSA14 and 15, PPA11-HSA12, PPA14-HSA11.  相似文献   

6.
Malate dehydrogenase (MDH; EC 1.1.1.37) isozymes were investigated in seeds and in seedlings and calli cultures ofC. peruvianus to determine if the changes in MDH isozyme banding patterns could be used as biochemical markers to identify the origin of regenerated plants from callus tissues. Four cytoplasmic MDH isozymes (sMDH), five mitochondrial MDH isozymes (mMDH), and one glyoxysomal MDH isozyme (gMDH) were detected and showed tissue- and stage-specific expression. A relationship of mMDH and gMDH isozyme patterns with callus tissues subcultured in three hormonal combinations and with the plants regenerated from these callus tissues was demonstrated. Furthermore, temperature and mechanical stress were found to be closely related to mMDH-1 activity in callus culture. Therefore, the different patterns of MDH isozymes in the various tissues ofC. peruvianus can be used as biochemical markers for the study of gene expression during development and as powerful tools in monitoring studies on callus cultures. This research was supported by the CNPq.  相似文献   

7.
R S Lemons  S J O'Brien  C J Sherr 《Cell》1977,12(1):251-262
Somatic cell hybrids derived from seven independent fusions between mouse X human and hamster X human parental cells were examined for their ability to support the replication of the baboon endogenous type C virus. These hybrids preferentially segregated human chromosomes while retaining rodent chromosomes, as demonstrated by karyotypic and isozyme analysis. A total of 41 primary colonies and 33 secondary subclones were analyzed for viral replication, as well as for the presence of enzyme structural gene markers for 19 of 23 human chromosomes. A syntenic association was seen between the ability of the baboon type C virus to infect and replicate in hybrid cultures and the expression of human malic enzyme-1 (assigned to human chromosome 6). Analysis of 86 highly segregated subclones derived from cells preinfected with baboon type C virus showed that the continued production of baboon type C virus segregated concordantly with the expression of three enzyme genes assigned to human chromosome 6 (malic enzyme-1, phosphoglucomutase-3 and superoxide dismutase-2). Subclones of infected hybrids which lost chromosome 6 and failed to release virus also failed to synthesize the virus-coded major structural protein p30. No syntenic association between baboon virus expression and any of 18 other human chromosomes was observed. These studies define a new gene (designated Bevi) on human chromosome 6 which dominantly controls the replication of baboon type C virus. The data suggest that Bevi may be a preferred integration site for the baboon type C DNA provirus in the human genome.  相似文献   

8.
Malate dehydrogenases 1 and 2 (MDH1 and MDH2), and malic enzyme 1 (ME1) play important roles in the Krebs cycle for energy metabolism. The mRNA abundance changes of MDH1, MDH2 and ME1 genes were measured across six different adipose tissues from the leaner Landrace and fatty Rongchang pig breeds using quantitative real-time PCR. The mRNA of MDH1, MDH2 and ME1 was more abundant in fatty Rongchang pigs than in leaner Landrace pigs. In both breeds, females exhibited higher adipocyte volume and mRNA abundance of MDH1, MDH2 and ME1 compared with males. These values were higher in the subcutaneous adipose tissue compared with visceral adipose tissue. Furthermore, mRNA abundance changes of MDH1, MDH2 and ME1 have the remarked significant positive correlation with adipocyte volume across the six adipose tissue types. We conclude that there are breed-, gender- and tissue-specific expression patterns of ME1, MDH1 and MDH2, which highlight their potential as candidate genes for selecting for fat volume in pigs.  相似文献   

9.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

10.
The baboon is an ideal animal model to study human kidney development. The aim of the current study was to use immunohistochemistry to localise the antigens TRA-1-60, TRA-1-81, GCTM-2 and podocalyxin in the developing baboon kidney where nephrogenesis was still on-going and in kidneys where nephrogenesis was complete. Fixed kidney sections from baboons delivered at 125, 140, 175 and 185 days gestation (term = 185 days) were immuno-labelled with antibodies directed against TRA-1-60, TRA-1-81, GCTM-2 and podocalyxin. In kidneys with on-going nephrogenesis (125 and 140 days gestation), TRA-1-60, TRA-1-81 and GCTM-2 were specifically localised to the apical plasma membrane of the epithelium of the ureteric ampullae and the collecting ducts, while podocalyxin immunostaining was not detected. In kidneys where nephrogenesis was complete (175 and 185 days gestation) localisation of these markers was again very specifically localised to the collecting ducts. In conclusion, although further experimentation is required to confirm the identity of the specific cell types marked by these antibodies, this study provides new insight into the distribution of commonly utilised stem cell antibodies in the developing baboon kidney.  相似文献   

11.
Zhu RJ  Rao XF  Wei DB  Wang DW  Wei L  Sun SZ 《生理学报》2012,64(2):177-186
To explore the adaptive mechanisms of plateau zokor (Myospalax baileyi) to the enduring digging activity in the hypoxic environment and of plateau pika (Ochotona curzoniae) to the sprint running activity, the functional differences of malate-aspartate shuttle system (MA) in liver of plateau zokor and plateau pika were studied. The ratio of liver weight to body weight, the parameters of mitochondria in hepatocyte and the contents of lactic acid in serum were measured; the open reading frame of cytoplasmic malate dehydrogenase (MDH1), mitochondrial malate dehydrogenase (MDH2), and the partial sequence of aspartate glutamate carrier (AGC) and oxoglutarate malate carrier (OMC) genes were cloned and sequenced; MDH1, MDH2, AGC and OMC mRNA levels were determined by real-time PCR; the specific activities of MDH1 and MDH2 in liver of plateau zokor and plateau pika were measured using enzymatic methods. The results showed that, (1) the ratio of liver weight to body weight, the number and the specific surface of mitochondria in hepatocyte of plateau zokor were markedly higher than those of plateau pika (P < 0.01 or P < 0.05), but the content of lactic acid in serum of plateau pika was significantly higher than that of plateau zokor (P < 0.01); (2) MDH1 and MDH2 mRNA levels as well as their enzymatic activities in liver of plateau zokor were significantly higher than those of plateau pika (P < 0.01 or 0.05), AGC mRNA level of the zokor was significantly higher than that of the pika (P < 0.01), while no difference was found at OMC mRNA level between them (P > 0.05); (3) mRNA level and enzymatic activity of MDH1 was significantly lower than those of MDH2 in the pika liver (P < 0.01), MDH1 mRNA level of plateau zokor was markedly higher than that of MDH2 (P < 0.01), but the activities had no difference between MDH1 and MDH2 in liver of the zokor (P > 0.05). These results indicate that the plateau zokor obtains ATP in the enduring digging activity by enhancing the function of MA, while plateau pika gets glycogen for their sprint running activity by increasing the process of gluconeogenesis. As a result, plateau pika converts the lactic acid quickly produced in their skeletal muscle by anaerobic glycolysis and reduces dependence on the oxygen.  相似文献   

12.
The MDH3 isozyme of Saccharomyces cerevisiae was purified from a haploid strain containing disruptions in genomic loci encoding the mitochondrial MDH1 and nonmitochondrial MDH2 isozymes. Partial amino acid sequence analysis of the purified enzyme was conducted and used to plan polymerase chain reaction techniques to clone the MDH3 gene. The isolated gene was found to encode a 343-residue polypeptide with a molecular weight of 37,200. The deduced amino acid sequence was closely related to those of MDH1 (50% residue identity) and of MDH2 (43% residue identity). The MDH3 sequence was found to contain a carboxyl-terminal SKL tripeptide, characteristic of many peroxisomal enzymes, and immunochemical analysis was used to confirm organellar localization of the MDH3 isozyme. Levels of MDH3 were determined to be elevated in cells grown with acetate as a carbon source, and under these conditions, MDH3 contributed approximately 10% of the total cellular malate dehydrogenase activity. Disruption of the chromosomal MDH3 locus produced a reduction in cellular growth rates on acetate, consistent with the presumed function of this isozyme in the glyoxylate pathway of yeast. Combined disruption of MDH1, MDH2, and MDH3 loci in a haploid strain resulted in the absence of detectable cellular malate dehydrogenase activity.  相似文献   

13.
14.
Kirby RR 《Gene》2000,245(1):81-88
The evolutionary history of the malate dehydrogenase (MDH) gene family [NAD-dependent MDH; EC 1.1.1.37 and NAD(P)-dependent MDH; EC 1.1.1.82] has received much attention. MDHs have also featured extensively as electrophoretic markers in population genetics and evolutionary ecology, and in many cases, intraspecific variation in MDH has been correlated with environmental variables. However, while the amino acid residues essential for MDH function are known, no studies have examined intraspecific nucleotide variation despite evidence indicating that natural selection may be operating on this locus. This study presents two sets of degenerate oligonucleotide PCR primers to facilitate the cloning of cytosolic MDH (cMDH) and mitochondrial MDH (mMDH) from a broad range of animals (cMDH) and animals and plants (mMDH). These primers were used to obtain putative cMDH and mMDH cDNAs from the mollusc Nucella lapillus. The N. lapillus cMDH cDNA was found to encode a putative cMDH protein of 334aa and 36kDa, while the mMDH cDNA encoded a putative mature mMDH protein of 315aa and 33kDa. The putative amino acid sequences of the two compartmentalised N. lapillus MDHs are presented and compared to other known MDH sequences.  相似文献   

15.
A truncated form (deltanMDH2) of yeast cytosolic malate dehydrogenase (MDH2) lacking 12 residues on the amino terminus was found to be inadequate for gluconeogenic function in vivo because the mutant enzyme fails to restore growth of a Deltamdh2 strain on minimal medium with ethanol or acetate as the carbon source. The DeltanMDH2 enzyme was also previously found to be refractory to the rapid glucose-induced inactivation and degradation observed for authentic MDH2. In contrast, kinetic properties measured for purified forms of MDH2 and deltanMDH2 enzymes are very similar. Yeast two-hybrid assays indicate weak interactions between MDH2 and yeast phosphoenolpyruvate carboxykinase (PCK1) and between MDH2 and fructose-1,6-bisphosphatase (FBP1). These interactions are not observed for deltanMDH2, suggesting that differences in cellular function between authentic and truncated forms of MDH2 may be related to their ability to interact with other gluconeogenic enzymes. Additional evidence was obtained for interaction of MDH2 with PCK1 using Hummel-Dreyer gel filtration chromatography, and for interactions of MDH2 with PCK1 and with FBP1 using surface plasmon resonance. Experiments with the latter technique demonstrated a much lower affinity for interaction of deltanMDH2 with PCK1 and no interaction between deltanMDH2 and FBP1. These results suggest that the interactions of MDH2 with other gluconeogenic enzymes are dependent on the amino terminus of the enzyme, and that these interactions are important for gluconeogenic function in vivo.  相似文献   

16.
Mitochondria are key organelles in mammary cells in responsible for a number of cellular functions including cell survival and energy metabolism. Moreover, mitochondria are one of the major targets under doxorubicin treatment. In this study, low‐abundant mitochondrial proteins were enriched for proteomic analysis with the state‐of‐the‐art two‐dimensional differential gel electrophoresis (2D‐DIGE) and matrix‐assistant laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) strategy to compare and identify the mitochondrial protein profiling changes in response to the development of doxorubicin resistance in human uterine cancer cells. The mitochondrial proteomic results demonstrate more than fifteen hundred protein features were resolved from the equal amount pooled of three purified mitochondrial proteins and 101 differentially expressed spots were identified. In which, 39 out of these 101 identified proteins belong to mitochondrial proteins. Mitochondrial proteins such as acetyl‐CoA acetyltransferase (ACAT1) and malate dehydrogenase (MDH2) have not been reported with the roles on the formation of doxorubicin resistance in our knowledge. Further studies have used RNA interference and cell viability analysis to evidence the essential roles of ACAT1 and MDH2 on their potency in the formation of doxorubicin resistance through increased cell viability and decreased cell apoptosis during doxorubicin treatment. To sum up, our current mitochondrial proteomic approaches allowed us to identify numerous proteins, including ACAT1 and MDH2, involved in various drug‐resistance‐forming mechanisms. Our results provide potential diagnostic markers and therapeutic candidates for the treatment of doxorubicin‐resistant uterine cancer.  相似文献   

17.
Here we have developed protocols using the baboon as a complementary alternative Old World Primate to rhesus and other macaques which have severe limitations in their availability. Baboons are not limited as research resources, they are evolutionarily closer to humans, and the multiple generations of pedigreed colonies which display complex human disease phenotypes all support their further optimization as an invaluable primate model. Since neither baboon-assisted reproductive technologies nor baboon embryonic stem cells (ESCs) have been reported, here we describe the first derivations and characterization of baboon ESC lines from IVF-generated blastocysts. Two ESCs lines (BabESC-4 and BabESC-15) display ESC morphology, express pluripotency markers (Oct-4, hTert, Nanog, Sox-2, Rex-1, TRA1-60, TRA1-81), and maintain stable euploid female karyotypes with parentage confirmed independently. They have been grown continuously for > 430 and 290 days, respectively. Teratomas from both lines have all three germ layers. Availabilities of these BabESCs represent another important resource for stem cell biologists.  相似文献   

18.
用薄层聚丙烯酰胺凝胶电泳方法分析118头人繁殖恒河猴血清四种蛋白质和同工酶遗传基因位点的多态性,结果表明,除醇脱氢酶(ADH)为单态外,其余三个基因位点均表现多态,前清蛋白(PA)可分为AA、AB、AC、AD和BB、CC,EE七种表型,各基因的频率为A 0.85,B 0.072,C 0.042,D 0.009,E 0.034转铁蛋白(Tf)可分为CC、DD、EE、FFGG、CD、CE、CG、CH、DE、DF、DG、DH、EF、EG、EH、FG十七种表型,墓因频率为C 0.064,D 0.380,E 0.188,F 0.111,G 0.244,H 0.014,苹果酸脱氢酶(MDH)可分MDH)1-1和MDH2-1两种表型,基因频率为MDH~10.958和MDH~20.042。  相似文献   

19.
Stingless bees from 14 hives of Plebeia droryana were analysed for the MDH isozymic polymorphic system, which is controlled by four alleles, MDH1-1, MDH1-2, MDH1-3 and MDH1-4. The hives came from four different localities in Brazil and at least 15 drones were tested from each one, to estimate the proportion of them that are sons of the queen or of workers; the obtained values were 83.8% (range 100% to 43%) and 16.2% (range 0% to 57%), respectively. It is suggested that male-producing workers evolved from the need to preserve xo-heteroalleles.  相似文献   

20.
Alkaline phosphatase (Alp), esterase-I (Es-I), esterase-II (Es-II), carbonic anhydrase (CA), cell esterase (cEs), esterase-D (Es-D), isocitrate dehydrogenase (ICD), malate dehydrogenase (MDH), 6-phosphogluconate dehydrogenase (PGD), tetrazolium oxidase (To), ceruloplasmin (Cp), Haptoglobin (Hp) and hemoglobin (Hb) in 58-75 samples of three species of tamarins (Saguinus mystax, S. labiatus and S. oedipus) were detected by means of horizontal starch gel electrophoresis. Two types (Es-I 1 and Es-I 2) for Es-I, four types (Es-II 1, Es-II 2, Es-II 3 and Es-II 2-3) for Es-II, three types (cEs 1, cEs 2 and cEs 1-2) for cEs, three types (PGD 1, PGD 2 and PGD 1-2) for PGD, two types (To 1 and To 2) for To, and three types (Hp 3, Hp 1-3 and Hp 2-3) for Hp were observed. However, Alp, CA, Es-D, ICD, MDH, Cp and Hb were monomorphic. In the S. mystax, no Es-II or PGD variants were observed. No Es-II variant was seen in the S. oedipus. Gene frequencies of cEs, PGD and Hb were biased in the three species. It is concluded that six polymorphic loci are useful as genetic markers for a species or individual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号