首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The secondary cascade of cell death that follows central nervous system (CNS) injury or ischemia has long been considered a target for neuroprotective agents aimed at sparing tissue and function. Recently, several laboratories have shown remarkable protection and recovery of function in rodent models of spinal cord injury using treatments that target components of the CNS inflammatory response. The use of minocycline, an antibiotic that reduces microglial activation, antibody blockade of the CD95 (FAS) ligand and the blockade of glycosphingolipid-induced iNOS (inducible nitric oxide synthase) have recently been shown to reduce neuronal and glial apoptosis with concomitant improvement in neurological function, and appear to enhance the efficacy of cell transplantation strategies.  相似文献   

3.

Background

We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.

Methods/Principal Findings

Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.

Conclusion

We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer.  相似文献   

4.
Cardiac fibrosis is characteristic of the end stage in nearly all forms of heart disease. Accumulation of extracellular matrix in the myocardium leads to increased risk of arrhythmia and impaired cardiac function, and ultimately progression to heart failure. Despite the critical need to slow or reverse development of cardiac fibrosis to maintain cardiac function, there are no approved therapies that directly target the extracellular matrix. Research into the underlying causes and therapeutic targets has been hampered, in part, by the lack of a clear marker for cardiac fibroblasts – the cells responsible for regulating extracellular matrix turnover. Lineage tracing studies as well as single-cell RNA sequencing studies have provided new insights into cardiac fibroblast origins and heterogeneity. Moreover, a greater understanding of pathways governing fibroblast activation during ischemic and non-ischemic cardiac remodeling and their communication with other inflammatory and cardiac cells may lead to novel therapeutic targets to slow or reverse fibrotic remodeling. The special issue of Cellular Signaling entitled “Cardiac Fibrosis: Pathobiology and Therapeutic Targets” is comprised of review articles in which these topics, as well as important open questions for future investigation, are discussed.  相似文献   

5.
Helicobacter pylori is now considered a major pathogen of the upper gastrointestinal tract. It is seen as an important cause of peptic ulceration not associated with NSAID use. It is also increasingly linked to other diseases of the GI tract, although the relationship between the organism and conditions such as gastric cancer, non-ulcer dyspepsia and gastroesophageal reflux disease is not as clear as is the case in peptic ulcer disease. This is probably because of a lack of well-performed, statistically powerful, prospective therapeutic trials that indicate that H. pylori eradication is of benefit in these diseases. The high infection rate without overt disease seen in many populations, especially from developing countries, probably contributes to this "credibility gap." While we have excellent therapeutic regimens available at this time, rational targeting requires that the objective evidence in favor of therapeutic intervention in upper GI disease, as well as the local H. pylori epidemiology, needs to be considered.  相似文献   

6.
RNA interference: potential therapeutic targets   总被引:2,自引:0,他引:2  
One of the most exciting findings in recent years has been the discovery of RNA interference (RNAi). RNAi methodologies hold the promise to selectively inhibit gene expression in mammals. RNAi is an innate cellular process activated when a double-stranded RNA (dsRNA) molecule of greater than 19 duplex nucleotides enters the cell, causing the degradation of not only the invading dsRNA molecule, but also single-stranded (ssRNAs) RNAs of identical sequences, including endogenous mRNAs. The use of RNAi for genetic-based therapies has been widely studied, especially in viral infections, cancers, and inherited genetic disorders. As such, RNAi technology is a potentially useful method to develop highly specific dsRNA-based gene-silencing therapeutics.  相似文献   

7.
Chemokines and their receptors are involved in the pathogenesis of diseases ranging from asthma to AIDS. Chemokine receptors are G-protein-coupled serpentine receptors that present attractive tractable targets for the pharmaceutical industry. It is only ten years since the first chemokine receptor was discovered, and the rapidly expanding number of antagonists holds promise for new medicines to combat diseases that are currently incurable. Here, I focus on the rationale for developing antagonists of chemokine receptors for inflammatory disorders and AIDS, and the accumulating evidence that favours this strategy despite the apparent redundancy in the chemokine system.  相似文献   

8.
9.
Weis SM  Cheresh DA 《Nature medicine》2011,17(11):1359-1370
As angiogenesis is essential for tumor growth and metastasis, controlling tumor-associated angiogenesis is a promising tactic in limiting cancer progression. The tumor microenvironment comprises numerous signaling molecules and pathways that influence the angiogenic response. Understanding how these components functionally interact as angiogenic stimuli or as repressors and how mechanisms of resistance arise is required for the identification of new therapeutic strategies. Achieving a durable and efficient antiangiogenic response will require approaches to simultaneously or sequentially target multiple aspects of the tumor microenvironment.  相似文献   

10.
Bone defects are one of the most serious pathologies that need tissue regeneration therapies. Studies on mesenchymal stem cells are changing the way we treat bone diseases. MSCs have been used for the treatment of osteogenesis imperfecta, hypophosphatasia, osteonecrosis of the femoral head, osteoporosis, rheumatoid arthritis and osteoarthritis. In this context, it is becoming ever more clear that the future of therapies will be based on the use of stem cells. In this concise review, we highlight the importance of the use of MSCs in bone diseases, focusing on the role of histone deacetylases and Wnt pathways involved in osteogenesis. A better understanding of MSC biology and osteogenesis is needed in order to develop new and targeted therapeutic strategies for the treatment of bone diseases/disorders.  相似文献   

11.
12.
《Biologicals》2014,42(1):1-7
Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell–cell and cell–surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review.  相似文献   

13.
14.
Eph receptors have been the subject of intense research since their discovery. Their widespread pattern of expression, involvement in a variety of important cellular phenomena and unique mode of action have stimulated interest in their role in health and disease across biological and medical domains. However, the function of Ephs in nervous system development and plasticity remains the best characterised. Recent advances suggest that Ephs play an important role in the development of brain pathologies. This review focuses on their basic structure and function and discusses the latest research on their role in neurological diseases.  相似文献   

15.
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.  相似文献   

16.
HDL and triglyceride as therapeutic targets   总被引:10,自引:0,他引:10  
PURPOSE OF REVIEW: Epidemiological studies have shown that plasma HDL-cholesterol is inversely related to coronary artery disease and that there is an inverse relationship between HDL-cholesterol and triglyceride levels, but it is now demonstrated that hypertriglyceridemia is an independent risk factor for coronary heart disease (CHD). The goal of this review is to discuss if triglycerides and HDL-cholesterol could be therapeutic targets to reduce cardiovascular risk. RECENT FINDINGS: Triglyceride measurement is not informative on the specificity of the triglyceride-rich lipoproteins present in the plasma because some of these are not atherogenic (chylomicrons, large VLDLs) while others are highly atherogenic (small VLDLs, remnants, IDL...). Statins, in addition to reducing LDL-cholesterol, significantly reduced atherogenic remnant lipoprotein cholesterol levels. 4S, CARE+LIPID, and AFCAPS/TexCAPS studies, suggested enhanced therapeutic potential of statins for improving triglyceride and HDL-cholesterol levels in patients with CHD. A fibrate (gemfibrozil) was shown to reduce death from CHD and non-fatal myocardial infarction in secondary prevention of CHD in men with low levels of HDL-cholesterol (VA-HIT); during the treatment these levels predicted the magnitude of reduction in risk for CHD events. SUMMARY: ATP III recommendations state, on triglycerides and HDL-cholesterol as targets to reduce cardiovascular risk: (1) that lowering LDL-cholesterol levels is the primary target of therapy, (2) a secondary target is to achieve a triglyceride level < 150 mg/dL and (3) clinical trial data are considered to be insufficient to support recommended a specific HDL-cholesterol goal even if HDL-cholesterol < 40 mg/dL is considered to be a major risk factor of CHD.  相似文献   

17.
Advances in our understanding of the synthesis, regulation and function of prostanoids have led to a new appreciation of their actions in health and disease. Prostanoid synthesis is essential for the generation of inflammatory pain and this depends not only on prostanoid production at the site of inflammation, but also on the actions of prostanoids synthesized within the central nervous system (CNS). Moreover, central prostanoid synthesis is controlled both by neural and humoral signals, the latter being a novel form of input to the CNS. Diverse compounds that act along the pathway of prostanoid synthesis and action, both in the periphery and in the CNS, might provide increased benefit for treating inflammatory pain hypersensitivity and its associated sickness syndrome, with a reduced risk of adverse effects.  相似文献   

18.
19.
Humans have appreciated the beneficial properties of the tobacco plant for thousands of years. These effects include alertness, reduced anxiety, muscle relaxation, and analgesia. Yet it has been less than two decades since the central actions of nicotine have been examined in earnest for potential therapeutic applications. In fact, the cholinergic systems, in comparison to other neurotransmitter systems of the body, have been relatively poorly exploited in terms of therapeutic agents, and the muscarinic cholinergic systems have been relegated mainly to the treatment of gastrointestinal disorders and glaucoma; for the nicotinic system, antagonists are used to induce muscle paralysis during certain surgical procedures. For both families of cholinergic receptors, widespread exploitation in terms of therapeutics has been limited by significant side effect profiles associated with available cholinergic drugs.  相似文献   

20.
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号