首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
31P-Nuclear Magnetic Resonance (NMR) was used to assess phosphate distribution in ectomycorrhizal and nonmycorrhizal roots of Castanea sativa Mill. as well as in the mycorrhizal fungus Pisolithus tinctorius in order to gain insight into phosphate trafficking in these systems. The fungus P. tinctorius accumulated high levels of polyphosphates during the rapid phase of growth. Mycorrhizal and nonmycorrhizal roots accumulate orthophosphate. Only mycorrhizal roots presented polyphosphates. The content in polyphosphates increased along the 3 months of mycorrhiza formation. In mycorrhizal roots of plants cultured under axenic conditions, the orthophosphate pool decreased along the culture time. In nonmycorrhizal roots the decrease in the orthophosphate content was less pronounced. The level of orthophosphate in mycorrhizal roots was significantly lower than in nonmycorrhizal ones, which indicates that this system relies upon the fungal polyphosphates as a major source of phosphate. Received: 28 July 1998 / Accepted: 21 October 1998  相似文献   

2.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

4.
The internal pH of peroxisomes in the yeasts Hansenula polymorpha, Candida utilis and Trichosporon cutaneum X4 was estimated by 31P nuclear magnetic resonance (NMR) spectroscopy. 31P NMR spectra of suspensions of intact cells of these yeasts, grown under conditions of extensive peroxisomal proliferation, displayed two prominent Pi-peaks at different chemical shift positions. In control cells grown on glucose, which contain very few peroxisomes, only a single peak was observed. This latter peak, which was detected under all growth conditions, was assigned to cytosolic Pi at pH 7.1. The additional peak present in spectra of peroxisome-containing cells, reflected Pi at a considerably lower pH of approximately 5.8–6.0. Experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazon (CCCP) and the ionophores valinomycin and nigericin revealed that separation of the two Pi-peaks was caused by a pH-gradient across a membrane separating the two pools. Experiments with chloroquine confirmed the acidic nature of one of these pools. In a number of transfer experiments with the yeast H. polymorpha it was shown that the relative intensity of the Pi-signal at the low pH-position was correlated to the peroxisomal volume fraction. These results strongly suggest that this peak has to be assigned to Pi in peroxisomes, which therefore are acidic in nature. The presence of peroxisome-associated Pi was confirmed cytochemically.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazon - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

5.
Polygalacturonase activity and location were analysed in leek roots (Allium porrum L.) colonized by Glomus versiforme (Karst.) Berch, an arbuscular mycorrhizal (AM) fungus. Polygalacturonase activity in mycorrhizal roots did not differ quantitatively from that found in nonmycorrhizal roots on all of the four harvesting dates. Fractionation of mycorrhizal root extracts by ion-exchange chromatography showed that expression of polygalacturonase was specific to the mutualistic association. Immunofluorescence and immunogold experiments were carried out to locate the polygalacturonase in mycorrhizal roots using a polyclonal antibody raised against a Fusarium moniliforme endopolygalacturonase. Immunolabelling was observed all over the arbuscules (intracellular fungal structures) but particularly at the interface between the arbuscule and the plant membrane. Since pectins are located in this area, we suggest that polygalacturonase produced during the symbiosis could play a role in plant pectin degradation.  相似文献   

6.
In suspensions of the green alga Chlorella fusca the influence of high pH and high ethylene-diamine-tetraacetic acid concentrations in the external medium, of French-press and perchloric acid extraction of the cells and of alkalization of the intracellular pH on the polyphosphate signal in 31P-nuclear magnetic resonance (31P NMR) spectra was investigated.The results show that part of the polyphosphates of asynchronous Chlorella cells are located outside the cytoplasmic membrane and complexed with divalent metal-ions. These polyphosphates are tightly bound to the cell wall and/or the cytoplasmic membrane and are not susceptible to hydrolyzation by strong acid at room temperature, in contrast to the intracytoplasmic polyphosphates.Upon alkalization of the internal pH of Chlorella cells, polyphosphates, previously not visible in the spectra become detectable by 31P-NMR-spectroscopy. 31P-NMR spectroscopic monitoring of polyphosphates during gradual alkalization of the extra-and intracellular space is proposed as a quick method for the estimation of the cellular polyphosphate content and distribution.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - NTP/NDP Nucleotide triphosphate/-diphosphate - PCA Perchloric acid - 31P-NMR 31P-nuclear magnetic resonance - PolyP polyphosphates - PP1, PP2, PP3 terminal, second and third phosphate residue of polyphosphates, respectively - PP4 core phosphate residues of polyphosphates  相似文献   

7.
A. Schubert  P. Wyss 《Mycorrhiza》1995,5(6):401-404
Root extracts of leek (Allium porrum L.) and soybean (Glycine max L. Merr.) showed trehalase activity which was inhibited by phloridzin and was several times higher than the activity of general -glucosidase. The activity had an acidic optimum. Trehalase activity in extracts of sporocarps and extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. (Trappe & Gerd.) was higher than in root extracts and had an optimum at pH 7. Following inoculation with G. mosseae, trehalase activity increased in mycorrhizal roots above the levels observed in nonmycorrhizal roots. Irrespective of fungal colonization, root trehalase activity increased in the presence of Mg2+, decreased in the presence of Mn2+ and Zn2+, and was unaffected by Na2EDTA.  相似文献   

8.
M. Soedarjo  M. Habte 《Mycorrhiza》1995,5(5):337-345
Glomus aggregatum and Leucaena leucocephala were allowed to interact in a manganese-rich oxisol at pH 4.3–6.0 and at soil P concentrations considered optimal for mycorrhizal host growth and sufficient for nonmycorrhizal host growth. At 0.02 mg P l-1, vesicular-arbuscular mycorrhizal fungal (VAMF) colonization of roots increased as soil pH increased from 4.3 to 5.0. However, VAMF colonization of roots did not respond to further increases in pH. At pH 6.0, growth of mycorrhizal Leucaena observed at 0.02 mg P was comparable with that observed at 0.8 mg P l-1. Increasing P concentration from 0.02 to 0.8 mg P 1-1 increased target soil pH from 4.3 to 4.7 and reduced the concentration of available soil Mn from 15.1 to 1.9 mg 1-1. Thus, the normal plant growth observed at the higher P concentration at pH<5 was mainly due to the alleviation of Mn toxicity as a result of its precipitation by excess P. VAMF colonization levels observed at pH 5.0–6.0 were similar, but maximal plant growth occurred at pH 6.0, suggesting that the optimal pH for mycorrhizal formation was substantially lower than for VAMF effectiveness. The poor growth of Leucaena at the lower P concentration in the unlimed soil was largely due to high concentrations of Mn2+ and H+ ions.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3910  相似文献   

9.
Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.  相似文献   

10.
The effect of Paxillus involutus, Laccaria laccata, Suillus luteus, S. bovinus, Hebeloma crustuliniforme and a strain of the ectendomycorrhizal fungus Mrg X (Ascomycotina) on the content of volatile organic compounds in roots of Pinus sylvestris seedlings grown in vitro was investigated. Volatile compounds extracted with a supercritical fluid extraction were primarily terpenes and sesquiterpenes and qualitatively were the same in roots of mycorrhizal and nonmycorrhizal plants. The major monoterpenes were α-pinene, Δ3-carene and β-pinene. Inoculation of plants with the fungi resulted in statistically non-significant increases in the total amount of the volatiles. The mycorrhizal fungi showed diversified effect on the concentrations of several terpenoids.  相似文献   

11.
Moisture retention properties of a mycorrhizal soil   总被引:1,自引:0,他引:1  
The water relations of arbuscular mycorrhizal plants have been compared often, but virtually nothing is known about the comparative water relations of mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis typically affects soil structure, and soil structure affects water retention properties; therefore, it seems likely that mycorrhizal symbiosis may affect soil water relations. We examined the water retention properties of a Sequatchie fine sandy loam subjected to three treatments: seven months of root growth by (1) nonmycorrhizal Vigna unguiculata given low phosphorus fertilization, (2) nonmycorrhizal Vigna unguiculata given high phosphorus fertilization, (3) Vigna unguiculata colonized by Glomus intraradices and given low phosphorus fertilization. Mycorrhization of soil had a slight but significant effect on the soil moisture characteristic curve. Once soil matric potential (m) began to decline, changes in m per unit change in soil water content were smaller in mycorrhizal than in the two nonmycorrhizal soils. Within the range of about –1 to –5 MPa, the mycorrhizal soil had to dry more than the nonmycorrhizal soils to reach the same m. Soil characteristic curves of nonmycorrhizal soils were similar, whether they contained roots of plants fed high or low phosphorus. The mycorrhizal soil had significantly more water stable aggregates and substantially higher extraradical hyphal densities than the nonmycorrhizal soils. Importantly, we were able to factor out the possibly confounding influence of differential root growth among mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis affected the soil moisture characteristic and soil structure, even though root mass, root length, root surface area and root volume densities were similar in mycorrhizal and nonmycorrhizal soils.  相似文献   

12.
A technique has been developed to efficiently extract purified, restrictable genomic DNA from spores of different arbuscular mycorrhizal fungi in order to begin detailed investigations of the genome of the Glomales. The protocol yielded variable amounts of DNA depending on the fungal species; for Scutellospora castanea and Gigaspora rosea it reached values of 1.5–2 ng/spore. EcoRI digests of DNA from S. castanea were cloned into pUC18 and about 1000 recombinant DNA clones were obtained. Of those screened, 50 contained inserts of 500–7000 bp. Selected inserts detected DNA sequences from S. castanea spores or roots infected by this fungus, but not from nonmycorrhizal roots. This is the first report of a partial genomic library from an arbuscular mycorrhizal fungus.  相似文献   

13.
Rough lemon seedlings were grown in mycorrhizal-infested or phosphorus-amended soil (25 and 300 mg P/kg) in greenhouse experiments. Plants Were inoculated with the citrus burrowing nematode, Radopholus citrophilus (0, 50, 100, or 200 nematodes per pot). Six months later, mycorrhizal plants and nonmycorrhizal, high-P plants had larger shoot and root weights than did non-mycorrhizal, low-P plants. Burrowing nematode population densities were lower in roots of mycorrhizal or nonmycorrhizal, high-P plants than in roots of nonmycorrhizal, low-P plants; however, differences in plant growth between mycorrhizal and nonmycorrhizal plants were not significant with respect to initial nematode inoculum densities. Phosphorus content in leaf tissue was significantly greater in mycorrhizal and nonmycorrhizal, high-P plants compared with nonmycorrhizal, low-P plants. Nutrient concentrations of K, Mg, and Zn were unaffected by nematode parasitism, whereas P, Ca, Fe, and Mn were less in nematode-infected plants. Enhanced growth associated with root colonization by the mycorrhizal fungus appeared to result from improved P nutrition and not antagonism between the fungus and the nematode.  相似文献   

14.
Although many studies support the importance of the external mycelium for nutrient acquisition of ectomycorrhizal plants, direct evidence for a significant contribution to host nitrogen nutrition is still scarce. We grew nonmycorrhizal seedlings and seedlings mycorrhizal with Paxillus involutus (Batsch) Fr. in a sand culture system with two compartments separated by a 45-m Nylon mesh. Hyphae, but not roots, can penetrate this net. Nutrient solutions were designed to limit seedling growth by nitrogen. Hyphal density in the hyphal compartment, host N status and shoot growth of mycorrhizal seedlings significantly increased in response to NH4 + addition to the hyphal compartment. Labeling the compartment only accessible to hyphae with 15NH4 + showed that the increase in N uptake in the mycorrhizal seedlings was a result of hyphal N acquisition from the hyphal compartment. These results indicate that hyphae of P. involutus may actively forage into N-rich patches and improve host N status and growth. In the mycorrhizal seedlings, which received additional NH4 + via their external mycelium, the increase in NH4 + supply less negatively affected Ca and Mg uptake than in nonmycorrhizal seedlings, where the additional NH4 + was directly supplied to the roots. This was most likely due to the close link of NH4 + uptake and H+ extrusion, which, in the nonmycorrhizal seedlings, lead to a strong acidification in the root compartment, and subsequently reduced Ca and Mg uptake, whereas in the mycorrhizal seedlings the site of intensive NH4 + uptake and acidification was in the hyphal and not in the root compartment. Our data support the idea that the ectomycorrhizal mycelium connected to an N-deficient host may actively forage for N. The mycelium may also be important as a biological buffer system ameliorating negative influence of high NH4 + supply on cation uptake.  相似文献   

15.
Red pines (Pinus resinosa Ait.) were grown in a pasteurized sandy loam either unamended with phosphate or fertilized with one of two levels of phosphate (34 or 136 mg/kg) as superphosphate, and with and without addition of Hebeloma arenosa inoculum. Shoot and total dry weights of mycorrhizal seedlings grown in soil unamended with P were greater than those for nonmycorrhizal seedlings grown in the same soil, but less than the dry weights of seedlings grown in soil amended with middle to high levels of P. Mycorrhizal infection was inhibited at the highest level of P amendment. 31P nuclear magnetic resonance spectra of intact mycorrhizal roots showed the presence of two dominant peaks, orthophosphate (Pi) and polyphosphate (polyP). The polyP peak was absent in spectra of nonmycorrhizal roots. The ratio for areas under the two peaks, Pi/polyP, was 1.8 for mycorrhizal roots grown in both unamended soil and soil that had received middle levels of superphosphate. Apparently, the fungus strongly mediates the supply of phosphate to the tree through the production of polyP, even at growth-limiting levels of soil P, and regulates compartmentalization of P in the mycorrhizal roots.  相似文献   

16.
Although it is well established that ectomycorrhizas improve the mineral nutrition of forest trees, there has been little evidence that they mediate uptake of divalent cations such as Mg. We grew nonmycorrhizal seedlings and seedlings mycorrhizal with Paxillus involutus Batsch in a sand culture system with two compartments separated by a 45-μm Nylon mesh. Hyphae, but not roots, can penetrate this net. Labeling the compartment only accessible to hyphae with 25Mg showed that hyphae of the ectomycorrhizal fungus Paxillus involutus transported Mg to their host plant. No label was found in nonmycorrhizal control plants. Our data support the idea that ectomycorrhizas are important for the Mg nutrition of forest trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Arsenic (As) contamination of irrigation water represents a major constraint to Bangladesh agriculture. While arbuscular mycorrhizal (AM) fungi have their most significant effect on P uptake, they have also been shown to alleviate metal toxicity to the host plant. This study examined the effects of As and inoculation with an AM fungus, Glomus mosseae, on lentil (Lens culinaris L. cv. Titore). Plants were grown with and without AM inoculum for 9 weeks in a sand and terra green mixture 50:50 v/v and watered with five levels of As (0, 1, 2, 5, 10 mg As L−1 arsenate). Inoculum of Rhizobium leguminosarum b.v. Viceae strain 3841 was applied to all plants. Plants were fed with modified Hoagland solution (1/10 N of a full-strength solution and without P). Plant height, leaf number, pod number, plant biomass and shoot and root P concentration/offtake increased significantly due to mycorrhizal infection. Plant height, leaf/ pod number, plant biomass, root length, shoot P concentration/offtake, root P offtake and mycorrhizal infection decreased significantly with increasing As concentration. However, mycorrhizal inoculation reduced As concentration in roots and shoots. This study shows that growing lentil with compatible AM inoculum can minimise As toxicity and increase growth and P uptake.  相似文献   

18.
The influence of anthracene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), on chicory root colonization by Glomus intraradices and the effect of the root colonization on PAH degradation were investigated in vitro. The fungus presented a reduced development of extraradical mycelium and a decrease in sporulation, root colonization, and spore germination when exposed to anthracene. Mycorrhization improved the growth of the roots in the medium supplemented containing 140 mg l−1 anthracene, suggesting a positive contribution of G. intraradices to the PAH tolerance of roots. Anthracene disappearance from the culture medium was quantified; results suggested that nonmycorrhizal chicory roots growing in vitro were able to contribute to anthracene dissipation, and in addition, that mycorrhization significantly enhanced anthracene dissipation. These monoxenic experiments demonstrated a positive contribution of the symbiotic association to anthracene dissipation in the absence of other microorganisms. In addition to anthracene dissipation, intracellular accumulation of anthracene was detected in lipid bodies of plant cells and fungal hyphae, indicating intracellular storage capacity of the pollutant by the roots and the mycorrhizal fungus.  相似文献   

19.
Effects of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae on the behavior of Hg in soil–plant system were investigated using an artificially contaminated soil at the concentrations of 0, 1.0, 2.0, and 4.0 mg Hg kg−1. Mercury accumulation was lower in mycorrhizal roots than in nonmycorrhizal roots when Hg was added at the rates of 2.0 and 4.0 mg kg−1, while no obvious difference in shoot Hg concentration was found between mycorrhizal and nonmycorrhizal treatments. Mycorrhizal inoculation significantly decreased the total and extractable Hg concentrations in soil as well as the ratio of extractable to total Hg in soil. Equilibration sorption of Hg by soil was investigated, and the results indicated that mycorrhizal treatment enhanced Hg sorption on soil. The uptake of Hg was lower by mycorrhizal roots than by nonmycorrhizal roots. These experiments provide further evidence for the role of mycorrhizal inoculation in increasing immobilization of Hg in soil and reducing the uptake of Hg by roots. Calculation on mass balance of Hg in soil suggests the presence of Hg loss from soil presumably through evaporation, and AM inoculation enhanced Hg evaporation. This was evidenced by a chamber study to detect the Hg evaporated from soil.  相似文献   

20.
Summary. The salt aster (Aster tripolium L.) colonized by the arbuscular mycorrhizal fungus Glomus intraradices Sy167 and noncolonized control plants were grown in a greenhouse for nine months with regular fertilization by Hoagland nutrient solution supplemented with 2% NaCl. Mycorrhizal roots showed a high degree of mycorrhizal colonization of 60–70% and formed approximately 25% more dry weight and much less aerenchyma than the nonmycorrhizal controls. Cryosectioning essentially preserved the root cell structures and apparently did not cause significant ion movements within the roots during cuttings. The experimental conditions, however, did not allow to discriminate between fungal and plant structures within the roots. Quantification of proton-induced X-ray emission (PIXE) data revealed that in control roots, Na+ was mainly concentrated in the outer epidermal and exodermal cells, whereas the Cl concentration was about the same in all cells of the roots. Cross sections of roots colonized by the mycorrhizal fungus did not show this Na1 gradient in the concentration from outside to inside but contained a much higher percentage of NaCl among the elements determined than the controls. PIXE images are also presented for the four other elements K, P, S, and Ca. Both in colonized and control roots, the concentration of potassium was high, probably for maintaining homoeostasis under salt stress. This is seemingly the first attempt to localize both Na+ and Cl in a plant tissue by a biophysical method and also demonstrates the usefulness of PIXE analysis for such kind of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号