首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The United States is not only the world's largest economy, but it is also one of the world's largest consumers of natural resources. The country, which is inhabited by some 5% of the world's population, uses roughly one‐fifth of the global primary energy supply and 15% of all extracted materials. This article explores long‐term trends and patterns of material use in the United States. Based on a material flow account (MFA) that is fully consistent with current standards of economy‐wide MFAs and covers domestic extraction, imports, and exports of materials for a 135‐year period, we investigated the evolution of the U.S. industrial metabolism. This process was characterized by an 18‐fold increase in material consumption, a multiplication of material use per capita, and a shift from renewable biomass toward mineral and fossil resources. In spite of considerable improvements in material intensity, no dematerialization has happened so far; in contrast to other high‐income countries, material use has not stabilized since the 1970s, but has continued to grow. This article compares patterns and trends of material use in the United States with those in Japan and the United Kingdom and discusses the factors underlying the disproportionately high level of U.S. per capita resource consumption.  相似文献   

2.
The international industrial ecology (IE) research community and United Nations (UN) Environment have, for the first time, agreed on an authoritative and comprehensive data set for global material extraction and trade covering 40 years of global economic activity and natural resource use. This new data set is becoming the standard information source for decision making at the UN in the context of the post‐2015 development agenda, which acknowledges the strong links between sustainable natural resource management, economic prosperity, and human well‐being. Only if economic growth and human development can become substantially decoupled from accelerating material use, waste, and emissions can the tensions inherent in the Sustainable Development Goals be resolved and inclusive human development be achieved. In this paper, we summarize the key findings of the assessment study to make the IE research community aware of this new global research resource. The global results show a massive increase in materials extraction from 22 billion tonnes (Bt) in 1970 to 70 Bt in 2010, and an acceleration in material extraction since 2000. This acceleration has occurred at a time when global population growth has slowed and global economic growth has stalled. The global surge in material extraction has been driven by growing wealth and consumption and accelerating trade. A material footprint perspective shows that demand for materials has grown even in the wealthiest parts of the world. Low‐income countries have benefited least from growing global resource availability and have continued to deliver primary materials to high‐income countries while experiencing few improvements in their domestic material living standards. Material efficiency, the amount of primary materials required per unit of economic activity, has declined since around 2000 because of a shift of global production from very material‐efficient economies to less‐efficient ones. This global trend of recoupling economic activity with material use, driven by industrialization and urbanization in the global South, most notably Asia, has negative impacts on a suite of environmental and social issues, including natural resource depletion, climate change, loss of biodiversity, and uneven economic development. This research is a good example of the IE research community providing information for evidence‐based policy making on the global stage and testament to the growing importance of IE research in achieving global sustainable development.  相似文献   

3.
This article characterizes the societal metabolism of the Colombian economy, identifying the main factors of natural resources use, overuse, or exhaustion. The environmental sustainability of a country depends to a large extent on the size of the economy compared to the available resource base. Material flow indicators provide an assessment of size or scale of economies. Direct material flow indicators are used to analyze the ecological dimension of economic activity in the period 1970–2007. Some resource extraction conflicts are briefly described in the light of material flow analysis. Foreign and domestic demand promotes increasing extraction and export of domestic natural resources. This is sometimes related to an irreversible deterioration of the local environment. The concept of “ecologically unequal exchange” with the rest of the world is analyzed in this context. Colombia has a large and growing negative physical trade balance, whereas per capita use of materials is still about half of the industrial countries’ average.  相似文献   

4.
This article deals with the economy‐wide material flows in the Czech Republic in 1990–2006. It presents in brief the overall trends of the material flow indicators in 1990–2002. The major part of the article is focused on the years 2002–2006, which immediately preceded and followed the accession of the Czech Republic to the European Union in 2004. It is shown that this accession had quite a significant impact on the volume and character of the material flows of the Czech Republic. The accession was beneficial from an economic point of view, as it allowed for an increased supply of materials needed for economic growth. Furthermore, it was accompanied by an improvement in the efficiency of material transformation into economic output. From an environmental and broader sustainability point of view, however, this accession brought about some controversial outcomes. There was a significant increase in the net export of environmental pressure, on one hand, and an increase in net additions to the physical stock of the economy, on the other. Although the former is controversial from the viewpoint of equity in sharing area and resources, the latter places an additional burden on future generations because all physical stocks will turn into waste and emissions at some point, when their life span expires.  相似文献   

5.
The notion of a (socio‐) metabolic transition has been used to describe fundamental changes in socioeconomic energy and material use during industrialization. During the last century, Japan developed from a largely agrarian economy to one of the world's leading industrial nations. It is one of the few industrial countries that has experienced prolonged dematerialization and recently has adopted a rigorous resource policy. This article investigates changes in Japan's metabolism during industrialization on the basis of a material flow account for the period from 1878 to 2005. It presents annual data for material extraction, trade, and domestic consumption by major material group and explores the relations among population growth, economic development, and material (and energy) use. During the observed period, the size of Japan's metabolism grew by a factor of 40, and the share of mineral and fossil materials in domestic material consumption (DMC) grew to more than 90%. Much of the growth in the Japanese metabolism was based on imported materials and occurred in only 20 years after World War II (WWII), when Japan rapidly built up large stocks of built infrastructure, developed heavy industry, and adopted patterns of mass production and consumption. The surge in material use came to an abrupt halt with the first oil crisis, however. Material use stabilized, and the economy eventually began to dematerialize. Although gross domestic product (GDP) grew much faster than material use, improvements in material intensity are a relatively recent phenomenon. Japan emerges as a role model for the metabolic transition but is also exceptional in many ways.  相似文献   

6.
Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in‐use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business‐as‐usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals.  相似文献   

7.
Advances in information and communications technologies (ICTs) could, in principle, offer a means of dematerializing a wide variety of services. In practice, however, the material resource impact of electronic equipment is itself an issue of increasing concern. This article looks specifically at music delivery methods to investigate whether digital media and associated hardware can reduce the material throughput attributable to music delivery. In the first part of the article, we examine recent market trends in digital music delivery and digital media sales. Next we report on a series of stakeholder interviews undertaken during 2006 to explore industry views on the relationship among audio content, electronic hardware, and environmental impact. Finally, we carry out a scenario analysis to investigate the potential material impacts of different possible futures in music delivery. Although in one scenario we find some potential for dematerialization, there are too many ambiguities in underlying assumptions about the relationship between content and hardware to predict with any confidence that the promise of digital media will lead to the dematerialization of music delivery. Currently, at least, it appears that digital formats have not contributed to dematerialization, essentially due to increases in hardware. It seems most likely that the material resource impacts of digital music delivery will continue to be significant for some time.  相似文献   

8.
Building stock constitutes a huge repository of construction materials in a city and a potential source for replacing primary resources in the future. This article describes the application of a methodological approach for analyzing the material stock (MS) in buildings and its spatial distribution at a city‐wide scale. A young Latin‐American city, the city of Chiclayo in Peru, was analyzed by combining geographical information systems (GIS) data, census information, and data collected from different sources. Application of the methodology yielded specific indicators for the physical size of buildings (i.e., gross floor area and number of stories) and their material composition. The overall MS in buildings, in 2007, was estimated at 24.4 million tonnes (Mt), or 47 tonnes per capita. This mass is primarily composed of mineral materials (97.7%), mainly concrete (14.1 Mt), while organic materials (e.g., 0.15 Mt of wood) and metals (e.g., 0.40 Mt of steel) constitute the remaining share (2.3%). Moreover, historical census data and projections were used to evaluate the changes in the MS from 1981 to 2017; showing a 360% increase of the MS in the last 36 years. This study provides essential supporting information for urban planners, helping to provide a better understanding of the availability of resources in the city and its future potential supply for recycling as well as to develop strategies for the management of construction and demolition waste.  相似文献   

9.
社会经济代谢是指由于人类活动导致的物质和能量在社会经济系统内部和边界上的迁移和转换。社会经济代谢研究已经成为产业生态学的核心领域。本文结合典型案例介绍了社会经济代谢研究的内涵和基本步骤,总结了社会经济代谢研究的主要发现:提供了追踪物质在社会经济系统的来源、去向和流动路径的方法与模型;揭示了物质材料及其社会经济代谢过程对现代化生产和生活方式的支撑作用;阐明了人类活动驱动与物质代谢相关的生态环境问题的机制;提供了评估资源利用效率、资源供需趋势和城市矿产开发潜力的模型与基础数据。最后指出了社会经济代谢研究的发展方向:增加研究对象并深化对每种对象的研究精度;拓展或细化研究系统的时空边界;引入并融合新的数据来源和研究方法;将社会经济代谢中的物质流对接到与其相关的生态环境影响;建立可共享、可拓展、可累积的数据平台。  相似文献   

10.
The objective of this paper is to explain the cause and proceedings of the 1930s Great Depression from a biophysical economic perspective. The Depression was a painful episode in the socio-technological transition from a coal/railroad regime to one based on hydrocarbons, motor vehicles, and electricity. The beginning—the Great Crash of October 1929—corresponded with drastic cuts in oil prices and announcement of oil supply certainty, following discovery of huge oilfields in the US Southwest. The Depression principally centered on a change from railroads to motor-vehicle-based transportation, but was long and drawn-out due to the hegemonic power that the railroads held over the US economy. The late 1920s saw increased use of hydrocarbon-based technologies, but the emerging technologies were still reliant on the old technological system. Methods of biophysical economics, mapping energy flows to capital formation, show the critical role of railroads in the Depression. In 1929, railroads accounted for 24% of the non-residential capital stock; they delivered between 70% and 76% of energy needs; and 69% of energy required for capital formation. Thus a hypothesis emerges that dwindling investment in the railroads was a major constraint on the economy. In biophysical terms, the US economy's main energy delivery system—coal carried by railcars—was hamstrung. Energy flow Sankey diagrams for 1929 and 1939 show the gradual change in energy systems that occurred over the Depression.  相似文献   

11.
Human activity has quadrupled the mobilization of phosphorus (P), a nonrenewable resource that is not fully recycled biologically or industrially. P is accumulated in both water and solid waste due to fertilizer application and industrial, agricultural, and animal P consumption. This paper characterizes the industrial flows, which, although smaller than the agricultural and animal flows, are an important phosphorus source contributing to the pollution of surface waters. We present the quantification of the network of flows as constrained by mass balances of the global annual metabolism of phosphorus, based on global consumption for 2004, all of which eventually ends up as waste and in the soil and water systems. We find that on a yearly basis, 18.9 million metric tons (MMT) of P is produced, of which close to 75% goes to fertilizer and the rest to industrial and others uses. Phosphoric acid is the precursor for many of the intermediate and end uses of phosphate compounds described in this study and accounts for almost 80% of all P consumed. Eventually, all of the P goes to waste: 18.5 MMT ends up in the soil as solid waste, and 1.32 MMT is emissions to air and water. Besides quantifying P flows through our economy, we also consider some possible measures that could be taken to increase the degree of recovery and optimization of this resource and others that are closely related, such as the recovery of sulfur from gypsum and wastewater (sludge), and fluorine from wet phosphoric acid production.  相似文献   

12.
The rapid technological evolution and adoption of consumer electronics highlights a growing need for adaptive methodologies to evaluate material consumption at the intersection of technological change and increasing consumption. While dematerialization and the circular economy (CE) have both been proposed to mitigate increasing material consumption, recent research has shown that these methods may be ineffective at achieving net material use reduction: When focused on specific products, these methods neglect the effects of complex interactions among and increasing consumption of consumer electronic products. The research presented here develops and applies a material flow analysis aimed at evaluating an entire “product ecosystem,” thereby including the effects of increasing consumption, product trade‐offs, and technological innovations. Results are then used to evaluate the potential efficacy of “natural” dematerialization (occurring as technology advances or smaller products substitute for larger ones) and CE (closing the loop between secondary material supply and primary material demand). Results show that material consumption by the ecosystem of electronics commonly used by U.S. households peaked in 2000. This consumption relies on increasingly diverse materials, including gold, cobalt, and indium, for whom secondary supply is still negligible, particularly given low recovery rates, often less than 1%. Potential circularity metrics of material “dilution,” “dispersion,” and “demand mismatch” are also evaluated, and indicate that CE approaches aimed at closing the loop on consumer electronic material still face several critical barriers particularly related to design and efficient recycling infrastructure.  相似文献   

13.
The realization of regional synergies in industrial areas with intensive minerals processing provides a significant avenue toward sustainable resource processing. This article provides an overview of past and current synergy developments in two of Australia's major heavy industrial regions, Kwinana (Western Australia) and Gladstone (Queensland), and includes a comparative review and assessment of the drivers, barriers, and trigger events for regional synergies initiatives in both areas. Kwinana and Gladstone compare favorably with well‐known international examples in terms of the current level and maturity of industry involvement and collaboration and the commitment to further explore regional resource synergies. Kwinana stands out with regard to the number, diversity, complexity, and maturity of existing synergies. Gladstone is remarkable with regard to unusually large geographic boundaries and high dominance of one industry sector. Many diverse regional synergy opportunities still appear to exist in both industrial regions (particularly in Kwinana), mostly in three broad areas: water, energy, and inorganic by‐product reuse. To enhance the further development of new regional synergies, the Centre for Sustainable Resource Processing (CSRP), a joint initiative of Australian minerals processing companies, research providers, and government agencies, has undertaken several collaborative projects. These include research to facilitate the process of identifying and evaluating potential synergy opportunities and assistance for the industries with feasibility studies and implementation of selected synergy projects in both regions. The article also reports on the progress to date from this CSRP research.  相似文献   

14.
National material stock (MS) accounts have been a neglected field of analysis in industrial ecology, possibly because of the difficulty in establishing such accounts. In this research, we propose a novel method to model national MS based on historical material flow data. This enables us to avoid the laborious data work involved with bottom‐up accounts for stocks and to arrive at plausible levels of stock accumulation for nations. We apply the method for the United States and Japan to establish a proof of concept for two very different cases of industrial development. Looking at a period of 75 years (1930–2005), we find that per capita MS has been much higher in the United States for the entire period, but that Japan has experienced much higher growth rates throughout, in line with Japan's late industrial development. By 2005, however, both Japan and the United States arrive at a very similar level of national MS of 310 to 375 tonnes per capita, respectively. This research provides new insight into the relationship between MS and flows in national economies and enables us to extend the debate about material efficiency from a narrow perspective of throughput to a broader perspective of stocks.  相似文献   

15.
The impact of Aboriginal landscape burning on the Australian biota   总被引:12,自引:0,他引:12  
  相似文献   

16.
Over the last three decades, China has experienced the most dynamic economic development lifting living standards and resulting in fast‐growing use of natural resources. In the past, the focus has been on national MFA accounts which do not do justice to the second largest economy, home to 19% of the world population and having 30% of global material use. In this research, we calculate material extraction for China at the regional level during 1995–2015 using the most recent available statistical data and applying the most up‐to‐date international calculation methods. In particular, we combine a bottom‐up and top‐down approach for constructing the dataset of China's economically used Domestic Extraction (DEU) in an integrated way. This approach also improves the Chinese national material flow accounts and allows us to present a reliable database of DE of materials for China to date. Our new dataset provides the basis for calculating material footprints and environmental impacts of China's regions. The dataset enables us to evaluate regional resource efficiency trends in China. We find that during the past two decades, China's material use has grown strongly from 11.7 billion tonnes in 1995 to 35.4 billion tonnes in 2015. Material use has accelerated between 2000 and 2010 but slowed down between 2010 and 2015 reflecting the economic contraction caused by the Global Financial Crisis which reduced the global demand for China's manufacturing and a reorientation of China's economic policy settings toward quality of growth. Unsurprisingly, different regions play different roles in the supply chain of materials, achieving different economic performances resulting in very diverse material efficiency outcomes. This information is important to allow for a targeted policy approach to increase resource efficiency, reduce environmental impacts of resource use, and grow wellbeing in China with large positive implications for global sustainability. This study provides the basis for the development of relevant resource management policies for different regions in the future.  相似文献   

17.
The concept of industrial symbiosis (IS) over the last 20 years has become a well‐recognized approach for environmental improvements at the regional level. Many technical solutions for waste and by‐product material, water, and energy reuse between neighboring industries (so‐called synergies) have been discovered and applied in the IS examples from all over the world. However, the potential for uptake of new synergies in the regions is often limited by a range of nontechnical barriers. These barriers include environmental regulation, lack of cooperation and trust between industries in the area, economic barriers, and lack of information sharing. Although several approaches to help identify and overcome some of the nontechnical barriers were examined, no methodology was found that systematically assessed and tracked the barriers to guide the progress of IS development. This article presents a new tool—IS maturity grid—to tackle this issue in the regional IS studies. The tool helps monitor and assess the level of regional industrial collaboration and also indicates a potential path for further improvements and development in an industrial region, depending on where that region currently lies in the grid. The application of the developed tool to the Gladstone industrial region of Queensland, Australia, is presented in the article. It showed that Gladstone is at the third (active) stage of five stages of maturity, with cooperation and trust among industries the strongest characteristic and information barriers the characteristic for greatest improvement.  相似文献   

18.
The objective of a circular economy (CE) is to maintain the value of products, materials, and resources in the economy by closing material loops and minimizing waste generation. In recent years, the role of public procurement has been recognized as an important, but as yet not fully exploited, opportunity by cities and municipalities in their transition toward circular societies. This study analyzed public procurement opportunities to promote CE. Different approaches and examples of circular public procurement were identified using case studies. In addition, opportunities to promote CE through sustainable and green public procurement policy were identified analyzing predefined sustainable or green public procurement criteria. The study concludes that public procurement can promote CE and related business models by setting criteria and requirements for the extension of product life spans, efficiency and/or intensity of use, and efficient cycling of biological or technical materials, as well as for the securing of clean and nonrisky cycles. Circular procurement can occur through the procurement of better‐quality products in circular terms, the procurement of new circular products, the use of business concepts that support the CE, and investments in circular ecosystems. Several sectors and product groups were identified as having potential for circular procurement, such as construction, waste, and wastewater management, transportation, food, and catering, furniture, and textiles. The study also suggests that the use of certain tools, such as performance‐based procurement, life cycle approach, and life cycle costing, as well as criteria concerning reuse and recycling of materials, could promote circular procurement. Market dialogue and cooperation between procurers and actors in the supply chains are important for the future development of circular procurement.  相似文献   

19.
With economic growth in many developing countries, not all are making similar progress with regard to material and environmental efficiencies. This study examines material use and CO2 emission patterns and intensities from 1971 to 2015 in a typical developing country, Pakistan, and investigates national‐level and multi‐country‐level efficiency improvements using data envelopment analysis. The results are used to derive key policy insights for a sustainable economic transition with higher resource and carbon efficiencies. Results show that material intensity has reduced by 39.1% while CO2 intensity has risen by 21.5% in the country. Pakistan, when compared with its top 10 export countries, was relatively more material and CO2 intensive. National‐level efficiency was found to be low in most of the periods due to material/energy intensive agriculture and industries, low value‐added exports, etc. Insights from the national‐level efficiency analysis indicate that surging CO2 intensities have started to decline since 2010 and the economy has greatly stabilized. Multi‐country analysis revealed that the efficiency gap between Pakistan and its developed export countries (such as the United Kingdom and France) has widened during the study period. Insights from the multi‐country analysis suggest that the economic growth and industrialization improves material and environmental efficiencies to some extent, yet these improvements are not equally distributed among all countries. As a way forward, integrated policies on sustainable resource consumption, carbon mitigation, and economic growth are necessary for accruing higher benefits from rising global trade and resource connectedness.  相似文献   

20.
In the first part of this series of two articles, an approach was presented that takes the entropy production associated with any process as a measure of the resource consumption of that process. Entropy production is thereby used to approximate the intuitive notion of consumption, which can best be described by the term “loss of potential utility.” This article presents an application example from the metallurgical sector. The related concept of exergy analysis is discussed and compared against the entropy approach. It was found that the production of 1 ton of refined copper generates 90.2 megajoules per Kelvin of entropy. A comparison with exergy analyses of copper production processes from the literature shows agreement at least on the order of magnitude. While results in one case deviate from the entropy analysis by about 40%, in another case the deviation is about 160%. One can only speculate on the reasons for this discrepancy, without knowing the exact process specifications of the processes analyzed. For entropy production as a measure for resource consumption, a baseline for comparison and interpretation of the results based on natural entropy disposal and reduction mechanisms is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号