首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse‐amplitude‐modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv/Fm), the effective PSII efficiency (ΦPSII), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of PI parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self‐shading (in relation to algal biomass) could have influenced photosynthesis in older communities.  相似文献   

2.
The photophysiology of turf algal communities was studied in situ on a temperate reef off the coast of South Australia. Algal communities were grown on artificial substrate at depths of 2, 4, and 10 m. To investigate the response of the algal communities to changing light environments in both the short and long term, reciprocal transplantation experiments were conducted among these depths on a seasonal basis. The extent of photoinhibition was assessed every 3 h for the first 2 days following transplantation and then on a daily basis for 16 days after transplantation. Photosynthetic acclimation was assessed using photosynthesis–light curves obtained from transplanted and non‐transplanted turfs after the acclimation period. Transplanted turfs responded very quickly to the light shift. Algae acclimated to low light (10 m depth) were highly susceptible to photoinhibition and photodamage, having greater decreases in maximum and effective quantum yields than turfs from shallower depths. Yield recovery and acclimation usually occurred very rapidly in algae from all depths (3–5 days), but were faster in spring and summer compared with winter. Changes in photosynthetic capacity (across seasons, depths, and after transplantation to a different depth) were accompanied by changes in respiration, so that the ratio of net to gross photosynthetic capacity (Pmnet : Pmgross) remained high and constant over the whole range of light levels. We discuss the possible acclimation strategies of turfs, taking into account the balance between photoacclimation, production, and growth strategy.  相似文献   

3.
We tested the main and interactive effects of elevated carbon dioxide concentration ([CO2]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N‐limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings (Betula papyrifera, Populus tremuloides, Acer saccharum, Fagus grandifolia, Pinus strobus, and Prunus serotina) to a factorial combination of atmospheric CO2 (ambient, and elevated CO2 at 658 μmol CO2 mol−1) and N deposition (ambient and ambient +30 kg N ha−1 yr−1) in open‐top chambers placed in an understory light gradient. Elevated CO2 exposure significantly increased apparent quantum efficiency of electron transport by 41% (P<0.0001), light‐limited photosynthesis by 47% (P<0.0001), and light‐saturated photosynthesis by 60% (P<0.003) compared with seedlings grown in ambient [CO2]. Experimental N deposition significantly increased light‐limited photosynthesis as light availability increased (P<0.037). Species differed in the magnitude of light‐saturated photosynthetic response to elevated N and light treatments (P<0.016). Elevated CO2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability (R2=0.26, P<0.0001). Experimental N deposition significantly increased average survival of all species by 48% (P<0.012). However, seedling survival was greatest (85%) under conditions of both high [CO2] and N deposition (P<0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass (R2=0.39, P<0.001), and that carboxylation capacity (Vcmax) was a better predictor for seedling growth and survival than maximum photosynthetic rate (Amax). Our results suggest that increasing [CO2] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition.  相似文献   

4.
This work examined the effects of elevated CO2 and temperature and water regimes, alone and in interaction, on the leaf characteristics [leaf area (LA), specific leaf weight (SLW), leaf nitrogen content (NL) based on LA], photosynthesis (light‐saturated net carbon fixation rate, Psat) and carbon storage in aboveground biomass of leaves (Cl) and stem (Cs) for a perennial reed canary grass (Phalaris arundinacea L., Finnish local cultivar). For this purpose, plants were grown under different water regimes (ranging from high to low soil moisture) in climate‐controlled growth chambers under the elevated CO2 and/or temperature (following a factorial design) over a whole growing season (May–September in 2009). The results showed that the elevated temperature increased the leaf growth, photosynthesis and carbon storage of aboveground biomass the most in the early growing periods, compared with ambient temperature. However, the plant growth declined rapidly thereafter with a lower carbon storage at the end of growing season. This was related to the accelerated phenology regulation and consequent earlier growth senescence. Consequently, the elevation of CO2 increased the Psat, LA and SLW during the growing season, with a significant concurrent increase in the carbon storage in aboveground biomass. Low soil moisture decreased the Psat, leaf stomatal conductance, LA and carbon storage in above ground biomass compared with high and normal soil moisture. This water stress effect was the largest under the elevated temperature. The elevated CO2 partially mitigated the adverse effects of high temperature and low soil moisture. However, the combination of elevated temperature and CO2 did not significantly increase the carbon storage in aboveground biomass of the plants.  相似文献   

5.
1. Our goal was to use physiological indicators [photosynthesis–irradiance (P–I) response, nutrient status], population level feedbacks (self‐shading) and ambient environmental conditions (dissolved nutrients, light, temperature) to improve our understanding of the seasonal and spatial population dynamics of Cladophora. 2. Cladophora grew in three distinct phases, rapid growth early in the season (May–July), a mid‐season population collapse (July–August) and autumn re‐growth. Across all sites and dates, mean net maximal photosynthesis [PM (NET)] was 6.9 ± 3.9 mg O2 g DM?1 h?1, and α was 0.055 ± 0.025 mg O2 g DM?1 μm photons?1 m?2. Mean values for critical irradiance (ICR) and the half‐saturation light intensity (IK), were 42.9 ± 32.1 and 189.3 ± 123.8 μm photons?1 m?2 s?1 respectively. 3. At most sites growth was phosphorus‐limited. Values of α were significantly higher at a site influenced by a nutrient enriched river plume, where algal growth was phosphorus‐sufficient. 4. Photoinhibition was not apparent in any of our P–I experiments. Even if photoinhibition had been apparent during in vitro P–I experiments, population level photosynthetic rates in the field would be little affected because intense self‐shading restricts inhibiting irradiances to the upper few mm–cm of the algal canopy. 5. Our physiological (P–I response) experiments contradicted previous assertions that high ambient temperatures, or nutrient deficiency, were primary causes of mid‐summer sloughing. In our study, sloughing occurred simultaneously at nutrient enriched and nutrient deficient sites, at temperatures well below critical values found during in vitro experiments, and our indicator of physiological condition (P–I response) remained unchanged leading up to, or immediately after, the sloughing event. 6. Self‐shading can reduce the convexity of the P–I response within in vitro incubations, even when the amount of algal material is low. Our experiments used 0.08 g DM of algal material that formed clumps c. 1 cm thick. Under these conditions, we estimated negligible (<1%) effects on PM, a 12% reduction in apparent values of α, and 14% and 17% increases in values of the α‐dependent terms ICR and IK, respectively. 7. Our results are consistent with the hypothesis that a population‐level negative feedback (self‐shading) is responsible for sloughing in dense macroalgal beds. Sloughing was probably inevitable once macroalgal bed density and thickness surpassed a critical threshold. Cells towards the base of the bed received insufficient light to maintain metabolic balance, began to decay and weaken, and became increasingly susceptible to physical detachment from shear stress.  相似文献   

6.
  • 1 We investigated photosynthesis‐irradiance relationships (P‐I curves; P = oxygen production rate due to photosynthesis, I = light irradiance rate at the water surface) and ecosystem respiration in a 9 km long reach of a river that is characterised by light conditions favouring primary production, high ambient nutrient concentrations, a high re‐aeration rate, and frequent spates. We addressed the question of how disturbances (spates) and season influence photosynthesis and ecosystem respiration.
  • 2 We used an oxygen mass‐balance model of the river to identify ecosystem respiration rates and the two parameters of a hyperbolic P‐I function (Pmax = maximum oxygen production rate due to photosynthesis, α = the initial slope of the P‐I function). The model was fitted to dissolved oxygen concentrations quasi‐continuously recorded at the end of the reach. We estimated parameters for 137 three‐day periods (during the years 1992–97) and subsequently explored the potential influence of season and disturbances (spates) on Pmax, α and ecosystem respiration using stepwise regression analysis.
  • 3 Photosynthesis‐irradiance relationships and ecosystem respiration were subject to distinct seasonal variation. Only a minor portion of the variability of P‐I curves could be attributed to disturbance (spates), while ecosystem respiration did not correlate with disturbance related parameters. Regular seasonal variation in photosynthesis and ecosystem respiration apparently prevailed due to the absence of severe disturbances (a lack of significant bedload transport during high flow).
  相似文献   

7.
Neto  Ana Isabel 《Hydrobiologia》2000,432(1-3):135-147
The intertidal benthic algal communities of two sites located on opposite coasts of São Miguel Island (Azores), were studied over a 2-year period (September 1993–September 1995). At both sites (São Roque on the south coast and São Vicente on the north), the littoral region was surveyed from the upper intertidal down to the sublittoral fringe. The survey revealed five distinct zones, with a variable degree of overlapping. The two upper zones were characterized by animals (littorinids and barnacles, respectively). Lower down, algal communities formed three distinct zones: an upper Fucus spiralis/Gelidium microdon association, a more extensive turf zone, and a belt featuring erect or frondose algae. Upper in the eulittoral, the turf was mainly monospecific, and dominated by Caulacanthus ustulatus. The lower eulittoral turf was dominated by articulated coralline algae, the associated species differing between the two sites studied. Mainly erect algae (Pterocladiella, Asparagopsis, etc.) occurred furthest down the shore and extended into the nearby shallow sublittoral. Two intertidal communities were studied at each locality: the upper eulittoral (Caulacanthus turf in São Roque and the Fucus spiralis/Gelidium microdon association at São Vicente), and the lower eulittoral (the coralline turf). The lower littoral communities had a higher algal diversity. A general pattern was observed in the seasonal variation of biomass: the lower levels exhibited the higher values in late summer/early autumn, the period in which the upper levels had the lowest standing crops. Physical factors are proposed to account for this. No significant inter-annual variations could be detected, indicating relatively stable communities, at least on a short-term basis.  相似文献   

8.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

9.
Rapid light-response curves (RLC) of variable chlorophyll fluorescence were measured on estuarine benthic microalgae with the purpose of characterising its response to changes in ambient light, and of investigating the relationship to steady-state light-response curves (LC). The response of RLCs to changes in ambient light (E, defined as the irradiance level to which a sample is acclimated to prior to the start of the RLC) was characterised by constructing light-response curves for the RLC parameters α RLC, the initial slope, ETRm,RLC, the maximum relative electron transport rate, and E k,RLC, the light-saturation parameter. Measurements were carried out on diatom-dominated suspensions of benthic microalgae and RLC and LC parameters were compared for a wide range of ambient light conditions, time of day, season and sample taxonomic composition. The photoresponse of RLC parameters was typically bi-phasic, consisting of an initial increase of all parameters under low ambient light (E < 21–181 μmol m−2 s−1), and of a phase during which α RLC decreased significantly with E, and the increase of ETRm,RLC and E k,RLC was attenuated. The relationship between RLC and LC parameters was dependent on ambient irradiance, with significant correlations being found between α RLC and α, and between ETRm,RLC and ETRm, for samples acclimated to low and to high ambient irradiances, respectively. The decline of α RLC under high light (Δα RLC) was strongly correlated (P < 0.001 in all cases) with the level of non-photochemical quenching (NPQ) measured before each RLC. These results indicate the possibility of using RLCs to characterise the steady-state photoacclimation status of a sample, by estimating the LC parameter E k, and to trace short-term changes in NPQ levels without dark incubation.  相似文献   

10.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

11.
Studies were performed of the carbon and nitrogen stable isotope (δ13C and δ15N) composition (δ13C and δ15N) of the corals Porites cylindrica and P. lutea (5 years after damaging the colonies by the bleaching events) and of epilithic algae settled onto damaged areas of coral colonies. Coral polyps and three epilithic algal communities (‘red algal turf, green algal turf and red calcified crusts’) were sampled along the boundary between communities of coral polyps and algal colonizers from differently illuminated habitats from 2 to 90% of incident surface photosynthetically active radiation (PAR0). It was found that communities with a predominance of red algae significantly differed from communities with a predominance of green algae in δ13C but not in δ15N values. An influence of habitat irradiance was found only for communities of coral polyps for δ13C and δ15N values: under bright light (70–90% PAR0) polyp tissues of both coral species were significantly enriched in heavy carbon isotopes and insignificantly in nitrogen isotopes (δ13C values difference ~4‰) relative to tissues of corals under lower light 15–50% PAR0. On the basis of these results we assumed that differences in light intensities in the habitat ranging from 15 to 90% PAR0 do not influence on accessibility of the main carbon and nitrogen sources for corals and algae, and exchange by these elements between organisms. We also assumed that the relative enrichment in the heavy carbon isotopes of coral tissues in high light is a result of decreased isotope fractionation (or the absence of fractionation in photosynthesis of their zooxanthellae).  相似文献   

12.
1. Nutrient diffusing substrata (NDS) were used to determine the relative importance of nutrients and light as potential limiting factors of periphyton biomass and nitrogen (N) uptake in Mediterranean streams subjected to different human impacts. The nutrients examined were phosphorus (P) and N, and we also further differentiated between the response of periphyton communities to N species (i.e. NO3‐N and NH4‐N). To examine the effect of light and nutrients on periphyton biomass, chlorophyll a accrual rates on NDS located at open and closed canopy sites were compared. The effect of nutrient availability on periphyton uptake was measured by 15N changes on the NDS after NO315N short‐term nutrient additions. 2. Results show that light was the main factor affecting algal biomass in the study streams. Algal biomass was in general higher at open than at closed canopy sites. Nutrient availability, as simulated with the NDS experiments, did not enhance algal biomass accrual in either of the 2 light conditions. 3. In the control treatments (i.e. ambient concentrations), periphyton NO3‐N uptake rates increased and C : N molar ratios decreased consistently with increases in N availability across streams. NO3‐N uptake rates were altered when ambient N concentrations were increased artificially in the N amended NDS. Periphyton assemblages growing on N enriched substrata seemed to preferentially take up N diffusing from the substratum rather than N from the water column. This response differed among streams, and depended on ambient N availability. 4. Periphyton biomass was not significantly different between substrata exposed to the two forms of available N sources. Nonetheless, we found differences in the effects of both N sources on the uptake of N from the water column. NH4‐N seemed to be the preferred source of N for periphyton growing on NDS. 5. Results suggest that the effect of riparian zones on light availability, although seldom considered by water managers, may be more important than nutrients in controlling eutrophication effects derived from human activities. Finally, our results confirm that not only increases in concentration, but also stoichiometric imbalances should be considered when examining N retention in human altered streams.  相似文献   

13.
A. D. Rosemond 《Oecologia》1993,94(4):585-594
Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.  相似文献   

14.
1. Atyid (Decapoda: Atyidae) shrimps influence the distribution of algal communities over different scales in tropical montane streams of Puerto Rico. Within pools of an atyid-dominated stream, atyid shrimps enhanced patchiness in algal communities along the depth gradient. Algal bands occurred in shallow pool margins where atyids did not forage (< 3 cm below water surface), with significantly greater standing crop, taxon richness, and structural complexity than deeper areas. In deeper water, atyids reduced small-scale patchiness in algal community composition and maintained a low-growing understorey turf dominated by sessile diatoms (Bacillariophyta) and, sometimes, closely cropped, filamentous blue-greens (Cyanophyta).
2. Among pools of the atyid-dominated stream, atyids interacted with light to determine algal patchiness between stream margins and deeper areas. In sunny pools, algal standing crop was 140-fold greater in pool margins than in deeper areas where atyids foraged. In shaded pools, however, standing crop in pool margins was only 5-fold greater than in deeper areas. Effects of light on algal standing crop were greater outside atyid foraging areas than within, indicating that shrimp grazing overrides the positive effects of light.
3. In contrast to the atyid-dominated stream, algal communities in an atyid-poor stream were characterized by a high biomass of loosely attached epipelic diatoms and no depth zonation. Interstream rock and shrimp transplant experiments indicated that atyids significantly reduced algal standing crop and altered community composition on rocks from atyid-poor streams within 24 h. Results support the hypothesis that atyid shrimps play a major role in determining observed interstream differences in algal communities.  相似文献   

15.
1. Atyid (Decapoda: Atyidae) shrimps influence the distribution of algal communities over different scales in tropical montane streams of Puerto Rico. Within pools of an atyid-dominated stream, atyid shrimps enhanced patchiness in algal communities along the depth gradient. Algal bands occurred in shallow pool margins where atyids did not forage (< 3 cm below water surface), with significantly greater standing crop, taxon richness, and structural complexity than deeper areas. In deeper water, atyids reduced small-scale patchiness in algal community composition and maintained a low-growing understorey turf dominated by sessile diatoms (Bacillariophyta) and, sometimes, closely cropped, filamentous blue-greens (Cyanophyta).
2. Among pools of the atyid-dominated stream, atyids interacted with light to determine algal patchiness between stream margins and deeper areas. In sunny pools, algal standing crop was 140-fold greater in pool margins than in deeper areas where atyids foraged. In shaded pools, however, standing crop in pool margins was only 5-fold greater than in deeper areas. Effects of light on algal standing crop were greater outside atyid foraging areas than within, indicating that shrimp grazing overrides the positive effects of light.
3. In contrast to the atyid-dominated stream, algal communities in an atyid-poor stream were characterized by a high biomass of loosely attached epipelic diatoms and no depth zonation. Interstream rock and shrimp transplant experiments indicated that atyids significantly reduced algal standing crop and altered community composition on rocks from atyid-poor streams within 24 h. Results support the hypothesis that atyid shrimps play a major role in determining observed interstream differences in algal communities.  相似文献   

16.
Biomass, akinete numbers, net photosynthesis, and respiration of Pithophora oedogonia were monitored over two growing seasons in shallow Surrey Lake, Indiana. Low rates of photosynthesis occurred from late fall to early spring and increased to maximum levels in late spring to summer (29–39 mgO2·g?1 dry wt·h?1). Areal biomass increased following the rise in photosynthesis and peaked in autumn (163–206g dry wt·m?2). Photosynthetic rates were directly correlated with temperature, nitrogen, and phosphorus over the entire annual cycle and during the growing season. Differences in photosynthetic activity and biomass between the two growing seasons (1980 and 1981) were apparently related to higher, early spring temperatures and higher levels of NO3-N and PO4-P in 1981. Laboratory investigations of temperature and light effects on Pithophora photosynthesis and respiration indicated that these processes were severely inhibited below 15°C. The highest Pmax value occurred at 35°C (0.602 μmol O2·mg?1 chl a·min?1). Rates of dark respiration did not increase above 25°C thus contributing to a favorable balance of photosynthetic production to respiratory utilization at high temperatures. Light was most efficiently utilized at 15°C as indicated by minimum values of Ik(47 μE·m?2·s?1) and Ic (6 μE·m?2·s?1). Comparison of P. oedogonia and Cladophora glomerata indicated that the former was more tolerant of temperatures above 30°C. Pithophora's tolerance of high temperature and efficient use of low light intensity appear to be adaptive to conditions found within the dense, floating algal mats and the shallow littoral areas inhabited by this filamentous alga.  相似文献   

17.
A restoration project is considered a success when the initial target is met, but many targets are plausible. We evaluated the success of a restoration project in its 11th year since treatment in a southwestern ponderosa pine–bunchgrass community and the appropriateness of several targets. We measured the responses of (1) total standing crop; (2) standing crop of five functional groups (C3 and C4 graminoids, leguminous forbs, and nonleguminous perennial and annual forbs); (3) graminoid community composition; and (4) standing crop of five common graminoid species (Festuca arizonica, Muhlenbergia montana, Elymus elymoides, Carex geophila, and Poa fendleriana). Targets were quantified in remnant grass patches, which provided the standards for these targets, and were assessed in three other forest patch types (pre‐settlement tree patches, post‐settlement tree patches, and patches where all post‐settlement trees were removed). Patches where all post‐settlement trees were removed reached target levels for total standing crop, C3 and C4 graminoid standing crop, graminoid community composition, and M. montana, E. elymoides, and C. geophila standing crops. Standing crop of legumes and of F. arizonica did not increase over time in any patch type. Targets were not met in pre‐settlement patches or in patches where some post‐settlement trees were left standing, suggesting that it is unrealistic to expect equal responses across all patch types. If increasing herbaceous standing crop is a major goal, practitioners should create gaps within the pine forest canopy.  相似文献   

18.
The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2] (380 or 700 μmol CO2 mol?1) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4‐week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2] and well‐watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2]. Low soil moisture significantly decreased net photosynthesis (Anet) and biomass in all [CO2] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2]. Although this reduction was relatively greater under elevated [CO2], Anet values during this heat wave were still 34% higher than under ambient [CO2]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2] and soil moisture conditions.  相似文献   

19.
The effects of species richness and elevated CO2 on community productivity under altered nutrient levels were studied in experimental herbaceous communities composed of species from the Midwestern United States annual community, which consists of three functional groups C3, C4 and N‐fixers. Aboveground and belowground biomass were measured at flowering stage and at the end of the experiment when fruits of most plants were ripe. At the low nutrient level, species richness did not have a significant effect on community productivity. However, at the high nutrient level, the community biomass decreased with decreasing species richness at both ambient and elevated CO2 in the first harvest, and at elevated CO2 in the second harvest. At low nutrient level, CO2 slightly increased community biomass at medium and high species richness. At high nutrient level, CO2 significantly increased community biomass in all species‐richness treatments in the first harvest, but a significant response was observed only in the high richness treatment in the second harvest. At the functional group level, biomass of C3 responded positively to CO2, and C4 responded very negatively to CO2. The N‐fixers responded positively to CO2 at low and medium species richness, but negatively at high species richness, showing a CO2×richness interaction. CO2 increased species evenness in the communities, depending on nutrient level. Species varied in the responses of light‐saturated net photosynthesis (Pmax) to elevated CO2, even within functional groups. Our findings suggest that (1) the relationship between productivity and species diversity was dependent on nutrient levels. (2) Species diversity enhances responses of communities to elevated CO2. (3) Harvest time can affect the results of diversity‐productivity experiments. (4) Responses of C3, C4, and N‐fixers to elevated CO2 in communities did not follow the prediction based on functional groups or plants grown individually, rather it depended on species richness.  相似文献   

20.
The long‐term interactive effects of ozone and light on whole‐tree carbon balance of sugar maple (Acer saccharum Marsh.) seedlings were examined, with an emphasis on carbon acquisition, foliar partitioning into starch and soluble sugars, and allocation to growth. Sugar maple seedlings were fumigated with ambient, 1·7 × ambient and 3·0 × ambient ozone in open‐top chambers for 3 years under low and high light (15 and 35% full sunlight, respectively). Three years of ozone fumigation reduced the total biomass of seedlings in the low‐ and high‐light treatments by 64 and 41%, respectively, but had no effect on whole‐plant biomass allocation. Ozone had no effect on net photosynthesis until late in the growing season, with low‐light seedlings generally exhibiting more pronounced reductions in photosynthesis. The late‐season reduction in photosynthesis was not due to impaired stomatal function, but was associated more with accelerated senescence or senescence‐like injury. In contrast, the 3·0 × ambient ozone treatment immediately reduced diurnal starch accumulation in leaves by over 50% and increased partitioning of total non‐structural carbohydrates into soluble sugars, suggesting that injury repair processes may be maintaining photosynthesis in late spring and early summer at the expense of storage carbon. The results in the present study indicate that changes in leaf‐level photosynthesis may not accurately predict the growth response of sugar maple to ozone in different light environments. The larger reduction in seedling growth under low‐light conditions suggests that seedlings in gap or closed‐canopy environments are more susceptible to ozone than those in a clearing. Similarly, understanding the effects of tropospheric ozone on net carbon gain of a mature tree will require scaling of leaf‐level responses to heterogeneous light environments, where some leaves may be more susceptible than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号