首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat hearts were perfused as working preparations by the method of Taegtmeyer, Hems & Krebs [(1980 Biochem. J. 186, 701--711]. In the presence of glucose, insulin significantly inhibited protein degradation at concentrations as low as 50 mu units/ml. Acetate or lactate, when present either as sole fuel for contraction or in combination with glucose, did not inhibit protein degradation. Insulin inhibition or protein degradation was decreased with either lactate as sole fuel. We suggest that the inhibition of protein degradation occurs over the normal range of plasma concentrations of insulin present in vivo and that the presence of glucose may be at least in part necessary for this effect of insulin.  相似文献   

2.
3.
4.
1. Livers from fed male rats were perfused in situ in a non-recirculating system with whole rat blood containing acetate at six concentrations, from 0.04 to 1.5 μmol/ml, to cover the physiological range encountered in the hapatic portal venous blood in vivo. 2. Below a concentration of 0.25 μmol/ml there was net production of acetate by the liver, while above it there was ner uptake with a fractional extraction of 40%. 3.No relationship was observed between blood [acetate] and hepatic ketogenesis, the ration [3-hydroxybutyrate]/[acetoacetate] or glucose output, either at low fatty acid concentration s or during oleate infusion. 4. Following the increase in serum fatty acid concentration, induced by oleate infusion, there were suquential incresase in ketogenesis and the ratio of [3-hydroxybutyrate]/[acetoacetate] while glucose output rose and lactate uptake fell significantly after in redox state. 5. There was a highly significant negative correlation between blood [acetate] and hepatic lactate uptake during oleate infusion. At the highest acetate concentration of 1.5 μmol/ml there was a small net hepatic lactate output. After oleate infusion ceased, lactate uptake increased, but the negative correlation between blood [acetate] and hepatic lactate uptake persisted. 6. Livers were also perfused with iether [1-14C]acetate or [U-14C]lactate at a concentration of acetate of either 0.3 or 1.3 μmol/ml of blood. With [1-14C]acetate, most of the radioactivity was recovered as fatty acids at the lower concentration of blood acetate. At the higher blood [acetate] a considerably smaller proportion of the radioactivity was recovered in lipids. With [U-14C]lactate the reverse pattern obtained i.e., recovery was greater at the high concentration of acetate and fell at the low concentration. Fatty acid biosynthesis, measured with 3H2O, was stimulated from 2.4 to 6.6 μmol of fatty acid/g of liver per h by high blood [acetate] although the contribution of (acetate+lactate) to synthesis remained constant at 33–38% of the total. 7. These results emphasize the important role of the liver in regulating blood acetate concentrations and indicate that it can be major hepatic substrate. Acetate taken up by the liver appeared to compete directly with lactate, for lipogenesis and metabolism and acetate uptake was inhibited by raised bloodd [lactate].  相似文献   

5.
6.
7.
8.
9.
In the absence of glucose, insulin stimulated the incorporation of (14)C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on (14)C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle.  相似文献   

10.
Synthesis of stress-induced protein in isolated and perfused rat hearts   总被引:1,自引:0,他引:1  
Isolated and perfused rat hearts were examined by two-dimensional gel electrophoresis and liquid scintillation counting for alterations in protein synthesis following incubation with L-[3H]leucine at 0.5-2.5, 2.5-4.5, or 4.5-6.5 h of perfusion. When 35-mL volumes of three different buffers were recycled for a 2-h period from 0.5 to 2.5 h, by fluorography little effect was seen on the normal patterns of protein synthesis and there was a moderate synthesis of a stress-induced protein (heat-shock protein) with a molecular mass of 71 X 10(3) daltons (SP71). However, hearts perfused with Krebs-improved Ringer 1 bicarbonate had the highest incorporation of L-[3H]leucine. When buffers were recycled for 30-min periods from 0.5 to 2.5 h, SP71 was synthesized in hearts perfused with Krebs-Henseleit original Ringer bicarbonate. Hearts perfused in a similar fashion with Krebs-improved Ringer 1 bicarbonate had the lowest incorporation of label into SP71 and in fact SP71 was undetectable on fluorograms. Overall protein synthesis was decreased and the ratio of SP71 to the total synthesis was increased at 4.5-6.5 h of perfusion when 35-mL volumes of Krebs-improved Ringer 1 bicarbonate was recycled for 2-h periods. A similar result was observed at 2.5-4.5 h of perfusion when this buffer was recycled for either the duration of the experiment or 30-min periods.  相似文献   

11.
12.
13.
Male Wistar rats chronically (15 weeks) fed a sucrose-rich diet (SRD; 63% w/w) developed hypertriglyceridemia and impaired glucose homeostasis. Hearts from these animals were isolated and perfused using the Langendorff recirculating method. Glucose at levels similar to those found in the animal in vivo was used as the only exogenous substrate. The hearts were perfused for 30 minutes in the presence or absence of insulin (30 mU/mL) in the perfusion medium. In the absence of the hormone, glucose uptake was impaired and the glucose utilization was reduced, with a significant increase of lactate release. Glucose oxidation, which was estimated from the activation state of the enzyme pyruvate dehydrogenase complex (PDHc), was depressed mainly due to both an increase of PDH kinase and a decrease of PDHa (active form of PDHc) activities. Although the addition of insulin in the perfusion medium improved the above parameters, it was unable to normalize them. The present results suggest that at least two different mechanisms might contribute to insulin resistance and to the impaired glucose metabolism in the perfused hearts of the dyslipemic SRD-fed animals: (1) reduced basal and insulin-stimulated glucose uptake and its utilization or (2) increased availability and oxidation of lipids (low PDHa and high PDH kinase activities), which in turn decrease glucose uptake and utilization. Thus, this nutritional experimental model may be useful to study how impaired glucose homeostasis, increases plasma free fatty acid levels and hypertriglyceridemia could contribute to heart tissue malfunction.  相似文献   

14.
It was examined whether lactate influences postischaemic hemodynamic recovery as a function of the duration of ischaemia and whether changes in high-energy phosphate metabolism under ischaemic and reperfused conditions could be held responsible for impairment of cardiac function. To this end, isolated working rat hearts were perfused with either glucose (11 mM), glucose (11 mM) plus lactate (5 mM) or glucose (11 mM) plus pyruvate (5 mM). The extent of ischaemic injury was varied by changing the intervals of ischaemia, i.e. 15, 30 and 45 min. Perfusion by lactate evoked marked depression of functional recovery after 30 min of ischaemia. Perfusion by pyruvate resulted in marked decline of cardiac function after 45 min of ischaemia, while in glucose perfused hearts hemodynamic performance was still recovered to some extent after 45 min of ischaemia. Hence, lactate accelerates postischaemic hemodynamic impairment compared to glucose and pyruvate. The marked decline in functional recovery of the lactate perfused hearts cannot be ascribed to the extent of degradation of high-energy phosphates during ischaemia as compared to glucose and pyruvate perfused hearts. Glycolytic ATP formation (evaluated by the rate of lactate production) can neither be responsible for loss of cardiac function in the lactate perfused hearts. Moreover, failure of reenergization during reperfusion, the amount of nucleosides and oxypurines lost or the level of high-energy phosphates at the end of reperfusion cannot explain lactate-induced impairment. Alternatively, the accumulation of endogenous lactate may have contributed to ischaemic damage in the lactate perfused hearts after 30 min of ischaemia as it was higher in the lactate than in the glucose or pyruvate perfused hearts. It cannot be excluded that possible beneficial effects of the elevated glycolytic ATP formation during 15 to 30 min of ischaemia in the lactate perfused hearts are counterbalanced by the detrimental effects of lactate accumulation.  相似文献   

15.
1. The regulation of glucose uptake and disposition in skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin and exercise, induced by sciatic-nerve stimulation, enhanced glucose uptake about tenfold in fed and starved rats, but were without effect in rats with diabetic ketoacidosis. 3. At rest, the oxidation of lactate (0.44 mumol/min per 30 g muscle in fed rats) was decreased by 75% in both starved and diabetic rats, whereas the release of alanine and lactate (0.41 and 1.35 mumol/min per 30 g respectively in the fed state) was increased. Glycolysis, defined as the sum of lactate+alanine release and lactate oxidation, was not decreased in either starvation or diabetes. 4. In all groups, exercise tripled O2 consumption (from approximately 8 to approximately 25 mumol/min per 30 g of muscle) and increased the release and oxidation of lactate five- to ten-fold. The differences in lactate release between fed, starved and diabetic rats observed at rest were no longer apparent; however, lactate oxidation was still several times greater in the fed group. 5. Perfusion of the hindquarter of a fed rat with palmitate, octanoate or acetoacetate did not alter glucose uptake or lactate release in either resting or exercising muslce; however, lactate oxidation was significantly inhibited by acetoacetate, which also increased the intracellular concentration of acetyl-CoA. 6. The data suggest that neither that neither glycolysis nor the capacity for glucose transport are inhbitied in the perfused hindquarter during starvation or perfusion with fatty acids or ketone bodies. On the other hand, lactate oxidation is inhibited, suggesting diminished activity of pyruvate dehydrogenase. 7. Differences in the regulation of glucose metabolism in heart and skeletal muscle and the role of the glucose/fatty acid cycle in each tissue are discussed.  相似文献   

16.
17.
Glucose and fatty acid metabolism of resting skeletal muscle were studied by perfusion of the isolated rat hind leg with a hemoglobin-free medium. Tissue integrity was demonstrated by normal ATP, ADP and creatine phosphate levels, by a sufficient oxygen supply, and by a normal appearance of perfused muscle specimens under the electron microscope. The rates of glucose and fatty acid uptake, and of lactate, alanine, glycerol and fatty acid release were constant over a perfusion period of 60 min. Insulin (1 unit/l) caused a more than threefold increase in glucose uptake, a stimulation of lactate production, and a 20% increase in the muscular glycogen levels. Fatty acids and alanine release were significantly diminished by insulin, but glycerol release did not change. The uptake of oleate by the rat hind leg was dependent on the medium concentration in a range of 0.7-1.9mM oleate, and was stimulated by insulin. Glucose uptake was not influenced by oleate, whether sodium was present or not. When the leg was perfused with [1-14C]oleate, 75% of the incorporated fatty acids were found in muscle lipids, 10% were oxidized to CO2, and 5% were recovered in bone lipids. The absolute amount of oleate oxidation was not altered by insulin. In all experiments with and without glucose in the medium, 70-80% of the 14C label incorporated into muscle lipids was found in the triglyceride fraction. In the presence of glucose, insulin significantly increased the incorporation of [1-14C]oleate into muscle triglycerides, whereas no insulin effect, either on fatty acid uptake or on triglyceride formation, could be observed when glucose was omitted from the perfusate. The present results indicate that a "glucose-fatty acid cycle" as found in rat heart muscle does not operate in resting peripheral skeletal muscle tissue. They also demonstrate that the stimulating effect of insulin on muscular fatty acid uptake and triglyceride synthesis is dependent on glucose supply. This finding can be intrepreted as a stimulation of fatty acid esterification by sn-glycerol 3-phosphate derived from an increased glucose turnover, which is in turn due to insulin.  相似文献   

18.
In isolated perfused rat liver leukotriene C4 and D4 but not B4 and E4 enhanced glucose and lactate output and lowered perfusion flow similar to the thromboxane A2 analogue U46619, extracellular ATP and prostaglandin F2 alpha. The kinetics of the metabolic changes caused by leukotriene C4 and D4 resembled those effected by U46619 and ATP but not those elicited by prostaglandin F2 alpha; the kinetics of the hemodynamic changes were similar only to those caused by U46619. The results show that leukotrienes could be important modulators of hepatic metabolism and hemodynamics and point to a complex intra-organ cell-cell communication between non-parenchymal and parenchymal cells.  相似文献   

19.
The effect of insulin on the conversion of pyruvate into fatty acids in the presence and in the absence of glucose was studied in epididymal adipose tissue of the rat. 1. In adipose tissue from the normal rat, conversion of pyruvate into fatty acids is directly related to its concentration, the maximal rates occurring with 40mm- and the half-maximal rates with approx. 4mm-pyruvate. Insulin treatment did not greatly influence the maximal rates, but the half-maximal rates were at much lower pyruvate concentrations. This effect of insulin could be seen with physiological concentrations of this hormone (50-100muunits/ml). 2. In adipose tissue from acute-alloxan-diabetic and 36h-starved rats the conversion of pyruvate into fatty acids was almost zero until its concentration exceeded 3mm and then increased markedly as the concentration of pyruvate was increased. The lag phase of this S-shaped curve was decreased but not eliminated when insulin was present. This could account for the very low rates of glucose conversion into fatty acids in these metabolic states. Maximum rates of fatty acid synthesis were similar in the presence and in the absence of insulin, but only when 30-40mm-pyruvate was employed. Re-feeding of the starved rats or insulin treatment of the diabetic rats in vivo for several days restored these patterns to normal.  相似文献   

20.
Microdialysis was used to assess the interstitial concentrations of glucose and lactate in the constant-flow-perfused rat hindlimb under varying levels of nutritive flow controlled by vasoconstrictors. Increased nutritive flow was achieved by norepinephrine (NE) or angiotensin II (ANG II) and decreased nutritive flow by serotonin (5-HT). NE and ANG II increased oxygen and glucose uptake as well as hindlimb lactate release by 50%. 5-HT decreased oxygen uptake by 15% but had no significant effect on glucose uptake or hindlimb lactate release. Microdialysis recovery of glucose and lactate was significantly elevated by NE and ANG II and decreased by 5-HT. The calculated interstitial concentration of glucose was increased by NE and ANG II but decreased by 5-HT. The interstitial concentration of lactate was decreased by NE and ANG II but increased by 5-HT. In all cases, nitroprusside reversed the effects of the vasoconstrictors. These data indicate that increased nutritive blood flow enhances the exchange of glucose and lactate by improving the supply of glucose to and the removal of lactate from the interstitium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号