首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine deaminase (ADA) and adenylate deaminase (AMPDA) catalyze the deamination of 2 ',3 '-O-isopropylideneadenosine-5'-carboxylic acid to the corresponding inosine derivative and dependence of the rate of enzymatic reaction on the ionization degree of the substrate has been studied at different pH values.  相似文献   

2.
Guanylate kinase was purified from human erythrocytes by affinity chromatography using GMP-agarose, and the four isozymes which are present were separated by chromatofocusing. The kinetic properties of each isozyme were analyzed with respect to the natural substrates GMP and dGMP, and the 5'-monophosphate derivatives of the antiviral nucleoside analogs 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) and 9-(2-hydroxyethoxymethyl)guanine (ACV, Acyclovir). The analysis of substrate kinetics yielded Km values for DHPG 5'-monophosphate which were similar with all isozymes (42-54 microM), and about 3-fold higher than the Km values obtained for GMP. Km values obtained with ACV 5'-monophosphate were 10-20-fold higher than the GMP values and varied nearly 4-fold among isozymes (209-753 microM). GMP produced the highest enzyme velocities with all isozymes, followed by dGMP, DHPG 5'-monophosphate, and ACV 5'-monophosphate, in that order. Differences in maximal velocities among isozymes were generally small. DHPG 5'-monophosphate inhibited the isozymes by a simple competitive mechanism with respect to GMP. In contrast, ACV 5'-monophosphate acted as an apparent hyperbolic mixed-type inhibitor. Similar patterns of inhibition were obtained with all isozymes. It is probable that differences is the reactivity of DHPG 5'-monophosphate and ACV 5'-monophosphate with individual guanylate kinase isozymes do not contribute significantly to differences in their antiviral effects.  相似文献   

3.
Orotidine 5'-monophosphate (OMP) decarboxylase from Plasmodium falciparum (PfODCase, EC 4.1.1.23) has been overexpressed, purified, subjected to kinetic and biochemical analysis, and crystallized. The native enzyme is a homodimer with a subunit molecular mass of 38 kDa. The saturation curve for OMP as a substrate conformed to Michaelis-Menten kinetics with K m = 350 +/- 60 nM and V max = 2.70 +/- 0.10 micromol/min/mg protein. Inhibition patterns for nucleoside 5'-monophosphate analogues were linear competitive with respect to OMP with a decreasing potency of inhibition of PfODCase in the order: pyrazofurin 5'-monophosphate ( K i = 3.6 +/- 0.7 nM) > xanthosine 5'-monophosphate (XMP, K i = 4.4 +/- 0.7 nM) > 6-azauridine 5'-monophosphate (AzaUMP, K i = 12 +/- 3 nM) > allopurinol-3-riboside 5'-monophosphate ( K i = 240 +/- 20 nM). XMP is an approximately 150-fold more potent inhibitor of PfODCase compared with the human enzyme. The structure of PfODCase was solved in the absence of ligand and displays a classic TIM-barrel fold characteristic of the enzyme. Both the phosphate-binding loop and the betaalpha5-loop have conformational flexibility, which may be associated with substrate capture and product release along the reaction pathway.  相似文献   

4.
Bacillus anthracis is well known in connection with biological warfare. The search for new drug targets and antibiotics is highly motivated because of upcoming multiresistant strains. Thymidylate kinase is an ideal target since this enzyme is at the junction of the de novo and salvage synthesis of dTTP, an essential precursor for DNA synthesis. Here the expression and characterization of thymidylate kinase from B. anthracis (Ba-TMPK) is presented. The enzyme phosphorylated deoxythymidine-5'-monophosphate (dTMP) efficiently with K (m) and V (max) values of 33 microM and 48 micromol mg(-1) min(-1), respectively. The efficiency of deoxyuridine-5'-monophosphate phosphorylation was approximately 10% of that of dTMP. Several dTMP analogs were tested, and D-FMAUMP (2'-fluoroarabinosyl-5-methyldeoxyuridine-5'-monophosphate) was selectively phosphorylated with an efficiency of 172% of that of D-dTMP, but L-FMAUMP was a poor substrate as were 5-fluorodeoxyuridine-5'-monophosphate (5FdUMP) and 2',3'-dideoxy-2',3'-didehydrothymidine-5'-monophosphate (d4TMP). No activity could be detected with 3'-azidothymidine-5'-monophosphate (AZTMP). The corresponding nucleosides known as efficient anticancer and antiviral compounds were also tested, and d-FMAU was a strong inhibitor with an IC(50) value of 10 microM, while other nucleosides--L-FMAU, dThd, 5-FdUrd, d4T, and AZT, and 2'-arabinosylthymidine--were poor inhibitors. A structure model was built for Ba-TMPK based on the Staphylococcus aureus TMPK structure. Docking with various substrates suggested mechanisms explaining the differences in substrate selectivity of the human and the bacterial TMPKs. These results may serve as a start point for development of new antibacterial agents.  相似文献   

5.
Experiments using a phosphodiesterase-minus mutant of Dictyostelium discoideum indicate that ligand-induced loss of cell surface cyclic adenosine 3':5'-monophosphate binding sites (down regulation) can be evoked with concentrations of cyclic adenosine 3':5'-monophosphate as low as 10(-8) M. The loss of receptor sites is observed after 5 min of cell preincubation with cyclic adenosine 3':5'-monophosphate and can be as extensive as 75 to 80%. This decrease in binding sites is correlated with the appearance of a slowly dissociating cyclic adenosine 3':5'-monophosphate binding component. Radioactive cyclic adenosine 3':5'-monophosphate bound to this form of receptor cannot be competed for by nonradioactive cyclic adenosine 3':5'-monophosphate or adenosine 5'-monophosphate and is not accessible to hydrolysis by cyclic adenosine 3':5'-monophosphate phosphodiesterase. The extent of appearance of this binding component is dependent upon the concentration of cyclic adenosine 3':5'-monophosphate used to elicit the down regulation response and the temperature of the incubation medium.  相似文献   

6.
The ability of 8-azidoadenosine 5'-monophosphate (N3AMP) to act as a photoaffinity label for the AMP binding site on glycogen phosphorylase (EC 2.4.1.1) was tested. 8-Azidoadenosine 5'-monophosphate can replace AMP as an allosteric modifier of both phosphorylases a and b; the pH optimum and the extent of activation are comparable to that observed with AMP. 8-Azidoadenosine 5'-monophosphate resembles the natural activator in having a higher affinity for phosphorylase a. The effects of 8-azidoadenosine 5'-monophosphate and AMP on phosphorylase b are additive when each is present at a concentration which gives less than 50% activation. Increasing the concentration of the substrate, glucose 1-phosphate, decreases the apparent activation constant (Ka) for the interaction of 8-azidoadenosine 5'-monophosphate with phosphorylase b. Glucose 6-phosphate is an inhibitor of phosphorylase b with either AMP or 8-azidoadenosine 5'-monophosphate. In the presence of ultraviolet light, 8-azidoadenosine 5'-monophosphate is irreversibly incorporated into phosphorylase a; incorporation at the allosteric site can be reduced if AMP is added prior to irradiation. Under the conditions used in the photolysis experiments, 3--5% of the available AMP sites were labeled with 8-azidoadenosine 5'-monophosphate. The data indicate the potential usefulness of 8-azidoadenosine 5'-monophosphate as a probe for the AMP site on phosphorylase.  相似文献   

7.
Y Sasaki  N Suzuki  T Sowa  R Nozawa  T Yokota 《Biochemistry》1976,15(7):1408-1413
Most of twenty-one 8-substitued adenosine 3',5'-monophosphate derivatives were found to inhibit competitively the hydrolysis of adenosine 3'5'-monophosphate by partially purified high Km (Michaelis-Menten constant) phosphodiesterase from hog brain cortex, which had one active site at high concentration of adenosine 3',5'-monophosphate (0.3 to 4.0 mM). The Ki value for the 8-substituted alkylaminoadenosine 3'5'-monophosphate derivative was found to decrease with increasing unbranched carbon chain of the substituent, and a minimum value was obtained in the case of 8-octylaminoadenosine 3',5'-monophosphate. The Ki value, however, increased gradually as the substituent of derivative became longer than that of 8-octylminoadenosine 3'5'-monophosphate. The similar phenomenon was observed in the 8-substituted alkylthioadenosine 3',5'-monophosphate. The standard affinity for adenosine 3,5'-monophosphate of the high Km phosphodiesterase was 5.0 kcal/mol, which was calculated from Km. The standard affinity for 8-hexylthioadenosine 3',5'-monophosphate, which inhibited most strongly the enzyme activity, was 7.2 kcal/mol. The difference (2.2 kcal/736) between the standard affinity for adenosine 3',5'-monphosphate and that for 8-hexylthioadenosine 3',5'-monophosphate seems to be based on the partial affinity for the substituent (hexylthio group) of the active site on the enzyme or its neighborhood. A characteristic similar interrelation between substituent length of derivatives and their inhibitory effect on the enzyme activity was observed similarly in two different series of derivatives, 8-substituted alkylaminoadenosine 3',5'-monophosphate and alkylthioadenosine 3',5'-monophosphate. The results may indicate the characteristic structure of the active site of the enzyme or its neighborhood.  相似文献   

8.
2'-Deoxycoformycin (DCF), a potent inhibitor of adenosine deaminase (ADA), is increasingly used as a tool to investigate adenosine metabolism and neuromodulation. To advance further the usefulness of DCF for studies of purines in the CNS, we determined the inhibitory potency of this compound against ADA and adenylate deaminase (AMPDA) in brain, the rate of ADA recovery in various brain regions after single or repeated intraperitoneal DCF administrations, and the effect of DCF on several neurotransmitter synthetic enzymes. In vitro, the Ki values for inhibition of ADA and AMPDA were found to be 23 pM and 233 microM, respectively. In vivo, DCF inhibited ADA with ED50 values ranging from 155 to 280 micrograms/kg at 2 h posttreatment, and 98% inhibition was achieved with 1 mg/kg. AMPDA activity was not affected by doses up to 5.0 mg/kg. In contrast to the greater than 95% inhibition of ADA seen 1 day after DCF at 5 mg/kg, the effectiveness of a second similar DCF treatment on the activity that had recovered by 14 days was dramatically reduced. Eight days after DCF treatment with doses of 5-50 mg/kg, the degree of ADA activity recovery in 10 brain regions examined was similar; it averaged 35% of control values at the low dose but showed some heterogeneity, ranging from 15 to 54% of control values, at the higher doses. Forty days after treatment with a single dose of 5 mg/kg, ADA activity recovered by 68-78% of control values in brain regions with normally high levels of activity and by 44-59% of control values in other regions. The activities of choline acetyltransferase, glutamic acid decarboxylase, and histidine decarboxylase (an enzyme colocalized with ADA in hypothalamic neurons) were unaffected by DCF treatment, a result suggesting the lack of a generalized neurotoxic effect. The very low doses of DCF required for ADA inhibition in vivo are consistent with the high potency of this drug against ADA in vitro, and any physiological effects observed at low doses might therefore be ascribed to inhibition of ADA.  相似文献   

9.
Transplantable BALB/c and AKR lymphomas of different cell surface immunologic phenotypes have distinctive patterns of response to the ADA inhibitor DCF in vivo and in vitro. BAL 9, a lymphoma of the Lyt-1+,2+ T cell phenotype, was the most sensitive to DCF in vivo, and its DNA synthesis was inhibited more than 95% when cultured in the presence of dAr and DCF in vitro. This was correlated with a 10-fold increase in dATP content. The ADA and AMPDA activities were both high. Two lymphomas of the Lyt-1-,2+ T cell phenotype, BAL 5 and AKTB - lt , as well as two B cell phenotype lymphomas, A20 .3 and AKTB -lb, were all moderately inhibited in their in vivo growth if enough DCF was administered. However, their DNA synthesis in vitro was only inhibited 8 to 24% by dAr and DCF, there was only a twofold increase in the accumulation of dATP, and ADA and AMPDA activities were both low in the two BALB/c lymphomas tested. BAL 13, the only lymphoma of the Lyt-1+,2- phenotype examined, was completely resistant to DCF in vivo and in vitro. When cultured in the presence of dAr and DCF there was a transient increase in dATP content, followed by an abrupt decline. AMPDA activity was five to seven times greater than in the other lymphomas tested. ADA activity was moderate. The activities of 5' nucleotidase and of adenosine kinase were low and approximately equal in all the BALB/c lymphomas. These results suggest that the response to DCF by lymphomas of various immunologic phenotypes can be correlated with their nucleoside metabolism. The sensitivity of BAL 9 and the resistance of BAL 13 to DCF are correlated with their tendency to accumulate dATP and with their AMPDA and ADA activity ratios. The moderate sensitivity to DCF in vivo of the other T and B cell lymphomas, however, could not be clearly explained by any of the in vitro parameters thus far investigated, and this suggests that mechanisms inhibiting lymphoma proliferation other than dATP accumulation may be operating.  相似文献   

10.
The effect of trimethylsilyl (TMS) derivatization on detection limits of mononucleotides in fast atom bombardment-mass spectrometry (FAB-MS) was examined. FAB-MS methods were developed to optimize sensitivity using adenosine 5'-monophosphate as a model compound and then applied to reference standards of two clinically important nucleotides: tricyclic nucleoside-5'-monophosphate (TCNMP) and 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP). The detection limit for the TMS derivative of TCNMP was 2.5-5 ng/microliters and less than 2.5 ng/microliters for FdUMP as its TMS derivative. This is greater than two orders of magnitude more sensitive than the FAB-MS analysis of the corresponding free compounds. These low detection limits for the TMS derivatives were obtained using a narrow scan range, signal averaging, detection in the negative ion mode, and 3-nitrobenzyl alcohol as the matrix. Hydrolysis of one or more of the labile TMS groups did occur, with the extent of hydrolysis being greatest in the more protic matrices.  相似文献   

11.
The levels of serum potassium, blood glucose, and plasma adenosine cyclic 3':5'-monophosphate (cAMP) and guanosine cyclic 3':5'-monophosphate (cGMP) were studied after the portal vein injection of cyclic nucleotides and their derivatives, (cAMP, cGMP, N6, O2'-dibutyryl adenosine 3':5'-monophosphate (DBcAMP), N6-monobutyryl adenosine cyclic 3':5'-monophosphate (NMBcAMP), and O2'-monobutyryl adenosine cyclic 3':5'-monophosphate (OMBcAMP), into dogs. Dose-related hyperglycemic responses were observed after the injection of DBcAMP (1-8 mg/kg). Transient and prominent hyperkalemia and hyperglycemia were caused by the injection of DBcAMP, NMBcAMP, and OMBcAMP (4 mg/kg). The hyperkalemic response was highest with NMBcAMP (1.22 mequiv./L), followed by OMBcAMP (0.64), DBcAMP (0.54), cGMP (0.47), and cAMP (0.41), whereas the hyperglycemic response was highest with NMBcAMP (146 mg/100 mL), followed by DBcAMP (93.6), OMBcAMP (77.1), and cAMP (56.0), and there was only a slight change with cGMP (28.4) compared with the control. The plasma level of cAMP was maximal with DBcAMP (1.92 nmol/mL), followed by NMBcAMP (1.28) and OMBcAMP (0.76), whereas the plasma levels of cGMP showed no evident change, except that caused by DBcAMP (0.27). Of the cyclic nucleotides tested, NMBcAMP was found to be most potent in causing both hyperkalemia and hyperglycemia. Based on these results, possible correlations between hyperkalemia, hyperglycemia, and plasma levels of cAMP and cGMP are discussed.  相似文献   

12.
Poly-5-dimethylaminouridylic acid, (poly(Me2N5U)) has been synthesized by the conversion of 5-bromouridine-5'-monophosphate to 5-dimethylaminouridine-5'-monophosphate which was later made into the 5'-diphosphate and subsequently polymerized by PNPase. The polymer formed a 1:1 hybrid with poly(A) with the ability to induce the production of interferon in chick embryoes as certain doses of the hybrid protected chick embryoes against wesselsbron virus (H 10964).  相似文献   

13.
A procedure has been outlined for the synthesis of ribonucleoside 3'-di- and -triphosphates. The synthetic scheme involves the conversion of a ribonucleoside 3'-monophosphate to its 2'-(5'-di)-O-(1-methoxyethyl) derivative, followed by successive treatments of the blocked ribonucleotide with 1,1'-carbonyldiimidazole and mono(tri-n-butylammonium) phosphate or pyrophosphate. The resulting ribonucleoside 3'-di- and -triphosphate derivatives are then deblocked by treatment with dilute aqueous acetic acid, pH 3.0. The use of this procedure is illustrated for adenosine 3'-monophosphate, which has been converted to its corresponding 3'-di- and -triphosphates in 61% overall yield. The decomposition of adenosine 3'-di- and -triphosphates to adenosine 2'-monophosphate, adenosine 3'-monophosphate, and adenosine cyclic 2',3'-monophosphate as a function of pH at 100 degrees has been studied as has the attempted polymerization of adenosine 3'-diphosphate with polynucleotide phosphorylase. Also prepared was guanosine 5'-diphosphate 3'-diphosphate (guanosine tetraphosphate; ppGpp), which was accessible via treatment of 2'-O-(1-methoxyethyl)guanosine 5'-monophosphate 3'-monophosphate with the phosphorimidazolidate of mono(tri-n-butyl ammonium) phosphate. The resulting blocked tetraphosphate was deblocked in dilute aqueous acetic acid to afford ppGpp in an overall yield of 18%.  相似文献   

14.
Poly-8-bromoriboadenylic acid was synthesized by the bromination of adenosine-5'-monophosphate to yield 8-bromoadenosine-5'-monophosphate which on conversion to the 5'-diphosphate form was polymerized by polynucleotide phosphorylase (PNPase). The polymer formed a 1:1 hybrid with polyribouridylic acid and the hybrid was found to protect chick embryos against Wesselsbron virus (H10964).  相似文献   

15.
The sulphatase A (aryl-sulphate sulphohydrolase, EC 3.1.6.1) of ox liver hydrolyses adenosine 3',5'-monophosphate (cyclic AMP) to adenosine 5'-phosphate at an optimum pH of approx. 4.3, close that for the hydrolysis of cerebroside sulphate, a physiological substrate for sulphatase A. The Km is 11.6 mM for cyclic AMP. On polyacrylamide gel electrophoresis sulphatase A migrates as a single protein band which coincides with both the arylsulphatase and phosphodiesterase activities, suggesting that these are due to a single protein. Cyclic AMP competitively inhibits the arylsulphatase activity of sulphatase A, showing that both activities are associated with a single active site on the enzyme. sulphatase A also hydrolyses guanosine 3',5'-monophosphate, but not uridine 3',5'-monophosphate nor adenosine 2',3'-monophosphate.  相似文献   

16.
WI-L2 cells (a B-lymphoblastoid cell line) were more resistant than CEM cells (a T-lymphoblastoid cell line) to deoxyadenosine, ara-A (9-beta-D-arabinofuranosyladenine), or ara-C (1-beta-D-arabinofuranosylcytosine) inhibition. This was caused by a difference in the composition of cytosol 5'-nucleotidases between WI-L2 and CEM cells. In intact cells, the endogenous production of deoxyadenosine from WI-L2 cells deficient in adenosine kinase (EC 2.7.1.20) and deoxycytidine kinase (EC 2.7.1.74) was consistently high, despite changes in endogenous adenosine production. Endogenous production of deoxyadenosine from CEM cells deficient in adenosine kinase and deoxycytidine kinase was, however, coordinated with endogenous adenosine production. In broken cells, cytosol dAMPase (2'-deoxyadenosine 5'-monophosphate 5'-nucleotidase) activity of WI-L2 cells was 3-5-fold higher than that of CEM cells. dAMPase activity could be separated from ATP-activated IMPase (inosine 5'-monophosphate 5'-nucleotidase) by gel filtration (molecular weight: dAMPase; 39,000-46,000; ATP-activated IMPase, greater than 150,000). Cytosol ATP-activated IMPase and dAMPase were isolated by phosphocellulose or DEAE-Bio-Gel A chromatography from non-specific phosphatases. The ATP-activated IMPase showed only marginal activity towards dAMP (2'-deoxyadenosine 5'-monophosphate), ara-AMP (9-beta-D-arabinofuranosyladenine 5'-monophosphate), or ara-CMP (cytosine-beta-D-arabinofuranoside 5'-monophosphate), even in the presence of ATP. The activity of ATP-activated IMPase was similar in WI-L2 and CEM cells. dAMPase was separated into two peaks by DEAE-Bio-Gel A chromatography; one of these peaks degraded ara-AMP and ara-CMP. The activities of both peaks from WI-L2 cells were higher than those from CEM cells. These results show that the degradation of dAMP, ara-AMP or ara-CMP was more specific and rapid in WI-L2 than in CEM cells.  相似文献   

17.
Inosine 5'-monophosphate dehydrogenase (IMPDH; EC 1.1.1.205) isolated from Escherichia coli B3 cells was strongly inhibited by 2-[2-(Z)-fluorovinyl]inosine 5'-monophosphate (2-FVIMP). Inhibition of IMPDH appears to be irreversible with k(inact) and K(i) values of 0.0269 s(-1) and 1.11 microM, respectively.  相似文献   

18.
Using resistant cells mechanism of action of new oncolytic nucleoside, tiazofurin (2-beta-D-ribofuranosyl thiazole-4 carboxamide, RTC) was studied in tissue cultured cells of Chinese Hamster Ovary cells (CHO-cells). Tiazofurin got converted in CHO-cells to tiazofurin-monophosphate and to NAD-analogue, a potent inhibitor of inosinate dehydrogenase. Resistant cells produced tiazofurin-5'-monophosphate in vitro but had a much reduced capacity to produce NAD-analogue, indicating absence of any effect of tiazofurin on incorporation of [14C]formate into guanine, inhibition of inosinate dehydrogenase as well as GTP levels in resistant cells. Using competition with various possible substrates it is found that the initial tiazofurin metabolism is catalysed by nicotinamide nucleoside kinase and NAD-analog formation is mediated by NAD-pyrophosphorylase. Decreased activity of the latter enzyme found in tiazofurin resistant cells not only inhibited the NAD analog formation from tiazofurin-5'-monophosphate but also the NAD-formation from nictotinamide-5'-monophosphate.  相似文献   

19.
Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5'-monophosphate, the last step in the de novo synthesis of uridine 5'-monophosphate. ODCase is a very proficient enzyme [Radzicka, A., and Wolfenden, R. (1995) Science 267, 90-93], enhancing the reaction rate by a factor of 10(17). This proficiency has been enigmatic, since it is achieved without metal ions or cofactors. Here we present a 2.5 A resolution structure of ODCase complexed with the inhibitor 1-(5'-phospho-beta-D-ribofuranosyl)barbituric acid. It shows a closely packed dimer composed of two alpha/beta-barrels with two shared active sites. The orientation of the orotate moiety of the substrate is unambiguously deduced from the structure, and previously proposed catalytic mechanisms involving protonation of O2 or O4 can be ruled out. The proximity of the OMP carboxylate group with Asp71 appears to be instrumental for the decarboxylation of OMP, either through charge repulsion or through the formation of a very short O.H.O hydrogen bond between the two carboxylate groups.  相似文献   

20.
A binding protein specific for cyclic guanosine 3':5'-monophosphate (cyclic GMP) has been partially purified from extracts of the eubacterium Caulobacter crescentus and resolved from cyclic adenosine 3':5'-monophosphate (cyclic AMP)-binding activity. Binding of cyclic GMP is not affected by the addition of cyclic AMP or 5'-GMP, but is inhibited about 50 percent by a 50-fold molar excess of dibutyryl cyclic GMP or cyclic hypoxanthine 3':5'-monophosphate. The apparent dissociation constant for the cyclic GMP-binding protein complex is 1.1 X 10(-6) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号