首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infectivity of Plasmodium cynomolgi in its natural host, the toque monkey, Macaca sinica, to Anopheles tessellatus mosquitoes was studied in relation to the evolution of anti-sexual-stage immunity in the host during the course of a blood-induced infection. The effects of serum on the infectivity of gametocytes and the intrinsic infectivity of gametocytes to mosquitoes on each day were assessed in membrane feeding experiments. Mosquitoes were also directly fed on the animal on each day. Our results demonstrate that during the very early patent period, before the peak of gametocytemia, the infection serum enhanced the infectivity of gametocytes up to two to three times above their infectivity in normal monkey serum. Subsequently, serum drawn post-peak of parasitemia ceased to enhance, and began to suppress, infectivity. After 2-3 months, long after parasitemias ceased patency, the serum no longer suppressed and between 3 and 4 months the serum again tended to enhance gamete infectivity before losing any significant effect. Serum infectivity enhancing effects were consistent with low indirect immunofluorescence test antibody titers against blood stage parasites first during the very early days of a blood infection before reaching blocking levels, and again during convalescence when antibodies were declining. The serum infectivity blocking effects on gametocytes were seen at the peak of antibody titers from about Days 9 to 23 of an infection. From 78 to 95% of the total infectivity of the parasite to mosquitoes during an infection occurred when infectivity enhancing activity was present in the serum. Hence, the infectivity of the parasite to mosquitoes was largely dependent on infectivity enhancing antibodies in host serum.  相似文献   

2.
The purpose of this work was to determine the infectivity to mosquitoes of genetically diverse Plasmodium falciparum clones seen in natural infections in the Gambia. Two principal questions were addressed: (i) how infectious are gametocytes of sub-patent infections, particularly at the end of the dry season; and (ii) are all clones in multiclonal infections equally capable of infecting mosquitoes? The work was carried out with two cohorts of infected individuals. Firstly, a group of 31 P. falciparum-infected people were recruited in the middle of the dry season (May, 2003), then examined for P. falciparum at the beginning (August 2003) and middle (October, 2003) of the transmission season. On each occasion, we examined the genotypes of asexual forms and gametocytes by PCR and RT-PCR, as well as their infectivity to Anopheles gambiae using membrane feeds. One individual gave rise to infected mosquitoes in May, and two in August. Different gametocyte genotypes co-existed in the same infection and fluctuated over time. The mean multiplicity of infection was 1.4, 1.7 and 1.5 clones in May, August and October, respectively. Second, a group of patients undergoing drug-treatment during August 2003 was tested for asexual and gametocyte genotypes and their infectivity to mosquitoes. Forty-three out of 100 feeds produced infections. The genetic complexity of the parasites in mosquitoes was sometimes greater than that detectable in the blood on which the mosquitoes had fed. This suggested that gametocytes of clones existing in the blood below PCR detection limits at the time of the feed were at least as infectious to the mosquitoes as the more abundant clones. These findings emphasise the crucial role of gametocyte complexity and infectivity in generating the remarkable diversity of P. falciparum genotypes seen in infected people, even in an area of seasonal transmission.  相似文献   

3.
Malaria-infected individuals can develop antibodies which reduce the infectiousness of Plasmodium gametocytes to biting Anopheles mosquitoes. When ingested in a bloodmeal together with gametocytes, these antibodies reduce or prevent subsequent parasite maturation in the insect host. This transmission-blocking immunity is usually measured in human sera by testing its effect on the infectivity of gametocytes grown in vitro. Here we evaluate evidence of transmission-blocking immunity in eight studies conducted in three African countries. Plasmodium falciparum gametocytes isolated from each individual were fed to mosquitoes in both autologous plasma collected with the parasites, and permissive serum from non-exposed donors. Evidence of transmission reducing effects of autologous plasma was found in all countries. Experiments involving 116 Gambian children (aged 0.5-15 years) were combined to determine which factors were associated with transmission reducing immune responses. The chances of infecting at least one mosquito and the average proportion of infected mosquitoes were negatively associated with recent exposure to gametocytes and sampling late in the season. These results suggest that effective malaria transmission-reducing antibodies do not commonly circulate in African children, and that recent gametocyte carriage is required to initiate and/or boost such responses.  相似文献   

4.
The antimalarial drug chloroquine has been reported to increase the infectivity of the forms of blood-stage malaria parasites (gametocytes) that are capable of infecting mosquito vectors. This effect has been demonstrated convincingly in the short term (12 h post treatment), although several authors have suggested infectivity enhancement a week or more after treatment. We carried out experiments to investigate the effects of chloroquine on the longer-term infectivity of gametocytes of the rodent malaria parasite, Plasmodium chabaudi, to Anopheles stephensi mosquitoes. Gametocytes of chloroquine-treated infections were significantly more infectious than untreated infections 6 and 7 days post-treatment, although not on days 8 and 9. However, this effect was most likely the result of a reduction in infectivity in untreated infections, caused by immune activity which was not so pronounced in chloroquine-treated infections. Gametocytaemia (gametocytes per r.b.c.) showed a strong positive and linear relationship with infectivity. Infectivity was not influenced by either asexual parasitaemia, asexual density or anaemia. Parsimonious interpretations of the effect of chloroquine on gametocyte infectivity are discussed.  相似文献   

5.
Terminally differentiated malarial gametocytes remain in the vertebrate circulation in a developmentally arrested state until they are taken up by the mosquito. The gametocytes then undergo gametogenesis in the mosquito mid-gut within minutes after ingestion of the infected blood meal. The male gametogenesis (exflagellation) can be triggered by the combination of a decrease in temperature of at least 5 degrees C and a simultaneous increase in pH between 8.0 and 8.3. Xanthurenic acid, which is present in mosquito mid-gut as well as in mosquito head, had been shown to induce exflagellation in vitro at a non-permissible pH. Here we report for the first time that with the increasing concentration of exogenous xanthurenic acid, there is a gradual increase in the number of oocysts in the mid-gut of infected mosquitoes. The concentration of xanthurenic acid for optimum infection in the membrane feeding assay was determined to be 100 microM. Three different strains of Plasmodium falciparum, viz. 3D7, 7G8 and W2 were tested in different experiments and similar findings hold true for all of them. These results demonstrate that xanthurenic acid not only induces exflagellation of male gametocytes but also promotes infectivity of Plasmodium falciparum to mosquito vectors.  相似文献   

6.
A developmental defect in Plasmodium falciparum male gametogenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Asexually replicating populations of Plasmodium parasites, including those from cloned lines, generate both male and female gametes to complete the malaria life cycle through the mosquito. The generation of these sexual forms begins with the induction of gametocytes from haploid asexual stage parasites in the blood of the vertebrate host. The molecular processes that govern the differentiation and development of the sexual forms are largely unknown. Here we describe a defect that affects the development of competent male gametocytes from a mutant clone of P. falciparum (Dd2). Comparison of the Dd2 clone to the predecessor clone from which it was derived (W2'82) shows that the defect is a mutation that arose during the long-term cultivation of asexual stages in vitro. Light and electron microscopic images, and indirect immunofluorescence assays with male-specific anti-alpha- tubulin II antibodies, indicate a global disruption of male development at the gametocyte level with at least a 70-90% reduction in the proportion of mature male gametocytes by the Dd2 clone relative to W2'82. A high prevalence of abnormal gametocyte forms, frequently containing multiple and unusually large vacuoles, is associated with the defect. The reduced production of mature male gametocytes may reflect a problem in processes that commit a gametocyte to male development or a progressive attrition of viable male gametocytes during maturation. The defect is genetically linked to an almost complete absence of male gamete production and of infectivity to mosquitoes. This is the first sex-specific developmental mutation identified and characterized in Plasmodium.  相似文献   

7.
We studied the effects of high temperature, 30 and 32 versus 27 C on early Plasmodium falciparum development in Anopheles gambiae experimentally infected with gametocytes from 30 volunteers with mean density of 264.1 gametocytes/microl blood (range: 16-1,536/microl). From several batches of mosquitoes, fed by membrane feeding, midguts of individual mosquitoes were dissected at 24 hr for ookinete enumeration and at 7 days to quantify oocysts. There were temperature-related differences in mean ookinete intensity per mosquito midgut, with 9.71 +/- 1.6 at 27 C, 9.85 +/- 2.32 at 30 C, and 3.89 +/- 0.81 at 32 C. The prevalence of oocyst infection decreased with an increase in temperatures from 15.9 to 8.5 to 6.4% at 27, 30, and 32 C, respectively. The average oocyst intensities for the infected mosquitoes increased with temperatures from 2.9 at 27 C to 3.5 at 30 C, and to 3.3 at 32 C. However, the success of infections was reduced at 30 and 32 C, and resulted in greater losses during consecutive inter-stage parasite development. The most significant impact of high temperatures occurred at the transition between macrogametocytes and ookinetes, whereas the transition between ookinetes and oocysts apparently was not affected. In contrast to other reports, exposure of mosquitoes infected with natural parasites to high temperatures did not eliminate preoocyst stages, as has been observed from laboratory studies using the NF-54 strain of P. falciparum. This observation of parasite resistance to high temperatures is consistent with the natural situation in tropical environments where perennial malaria transmission occurs during hot dry seasons.  相似文献   

8.
Malarial gametocytes, which are taken up by mosquitoes during a blood meal, develop in the gut of the mosquito into gametes. Gametes and gametocytes contain the target antigens of transmission-blocking immunity. Here, we show that the peripheral blood of nonexposed donors contains Plasmodium falciparum gamete-reactive T cells at frequencies ranging from 1/300 to 1/4000. Studies on long-term clones demonstrated that these cells often recognized antigens shared between gametes and asexual stage parasites or even between heterologous gametes, although it has been possible to derive a P. falciparum gamete-specific T clone. The T clones examined were T3+, T4+, T8-, and either HLA-DR- or HLA-DQ-restricted. They responded to gametes by both proliferation and the secretion of gamma-interferon. The gamete-specific clone and other asexual cross-reactive clones examined could be stimulated in vitro by a preparation of mature gametocytes within RBC, but not by RBC alone, suggesting that gametocytes are immunogenic or can become immunogenic for T cells in vivo. The significance of these observations to mosquito transmission of malaria and development and application of a gamete vaccine are discussed.  相似文献   

9.
10.
Do malaria parasites enhance the attractiveness of humans to the parasite's vector? As such manipulation would have important implications for the epidemiology of the disease, the question has been debated for many years. To investigate the issue in a semi-natural situation, we assayed the attractiveness of 12 groups of three western Kenyan children to the main African malaria vector, the mosquito Anopheles gambiae. In each group, one child was uninfected, one was naturally infected with the asexual (non-infective) stage of Plasmodium falciparum, and one harboured the parasite's gametocytes (the stage transmissible to mosquitoes). The children harbouring gametocytes attracted about twice as many mosquitoes as the two other classes of children. In a second assay of the same children, when the parasites had been cleared with anti-malarial treatment, the attractiveness was similar between the three classes of children. In particular, the children who had previously harboured gametocytes, but had now cleared the parasite, were not more attractive than other children. This ruled out the possibility of a bias due to differential intrinsic attractiveness of the children to mosquitoes and strongly suggests that gametocytes increase the attractiveness of the children.  相似文献   

11.
Much of the epidemiology of Plasmodium falciparum in Sub-Saharan Africa focuses on the prevalence patterns of asexual parasites in people of different ages, whereas the gametocytes that propagate the disease are often neglected. One expected benefit of the widespread introduction of artemisinin-based combination therapy for malaria is a reduction in gametocyte carriage. However, the factors that affect the transmission of parasites from humans to mosquitoes show complex dynamics in relation to the intensity and seasonality of malaria transmission, and thus such benefits might not be automatic. Here, we review data on gametocyte carriage in the context of the development of naturally acquired immunity and population infectivity.  相似文献   

12.
Anaemia in falciparum malaria is associated with an increased risk of gametocyte carriage, but its effects on transmission have not been extensively evaluated in malarious children. Plasmodium falciparum gametocyte carriage, emergence, clearance, population sex ratios (SR) (defined as the proportion of gametocytes that are male), inbreeding rates and temporal changes in SR were evaluated in 840 malarious children. Gametocyte carriage pre-treatment was at a level of 8.1%. Anaemia at enrolment was an independent risk factor for gametocyte carriage post-treatment. The emergence of gametocytes seven days post-treatment was significantly more frequent in anaemic children (7/106 vs. 10/696, p = 0.002). In the initially detected gametocytes, the proportion of children with a male-biased SR (MBSR) (> 0.5) was significantly higher in anaemic children (6/7 vs. 3/10, p = 0.027). Pre-treatment SR and estimated inbreeding rates (proportion of a mother's daughters fertilised by her sons) were similar in anaemic and non-anaemic children. Pre-treatment SR became more female-biased in non-anaemic children following treatment. However, in anaemic children, SR became male-biased. Anaemia was shown to significantly increase gametocyte emergence and may significantly alter the SR of emerging gametocytes. If MBSR is more infective to mosquitoes at low gametocytaemia, then these findings may have significant implications for malaria control efforts in endemic settings where malaria-associated anaemia is common.  相似文献   

13.
Sulfadoxine-pyrimethamine (SP) treatment increases the rate of gametocyte carriage and selects SP resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), raising concerns of increased malaria transmission and spread of drug resistance. In a setting in Mali where SP was highly efficacious, we measured the prevalence of DHFR and DHPS mutations in P. falciparum infections with microscopy-detected gametocytes following SP treatment, and used direct feeding to assess infectivity to Anopheles gambiae sensu lato. Children and young adults presenting with uncomplicated malaria were treated with SP or chloroquine and followed for 28 days. Gametocyte carriage peaked at 67% 1 week after treatment with a single dose of SP. Those post-SP gametocytes carried significantly more DHFR and DHPS mutations than pre-treatment asexual parasites from the same population. Only 0.5% of 1728 mosquitoes fed on SP-treated gametocyte carriers developed oocysts, while 11% of 198 mosquitoes fed on chloroquine-treated gametocyte carriers were positive for oocysts. This study shows that in an area of high SP efficacy, although SP treatment sharply increased gametocyte carriage, the infectiousness of these gametocytes to the vector may be very low. Accurate and robust methods for measuring infectivity are needed to guide malaria control interventions that affect transmission.  相似文献   

14.
The within-host and between-host dynamics of malaria are linked in myriad ways, but most obviously by gametocytes, the parasite blood forms transmissible from human to mosquito. Gametocyte dynamics depend on those of non-transmissible blood forms, which stimulate immune responses, impeding transmission as well as within-host parasite densities. These dynamics can, in turn, influence antigenic diversity and recombination between genetically distinct parasites. Here, we embed a differential-equation model of parasite-immune system interactions within each of the individual humans represented in a discrete-event model of Plasmodium falciparum transmission, and examine the effects of human population turnover, parasite antigenic diversity, recombination, and gametocyte production on the dynamics of malaria. Our results indicate that the local persistence of P. falciparum increases with turnover in the human population and antigenic diversity in the parasite, particularly in combination, and that antigenic diversity arising from meiotic recombination in the parasite has complex differential effects on the persistence of founder and progeny genotypes. We also find that reductions in the duration of individual human infectivity to mosquitoes, even if universal, produce population-level effects only if near-absolute, and that, in competition, the persistence and prevalence of parasite genotypes with gametocyte production concordant with data exceed those of genotypes with higher gametocyte production. This new, integrated approach provides a framework for investigating relationships between pathogen dynamics within an individual host and pathogen dynamics within interacting host and vector populations.  相似文献   

15.
Gametocytes are the intraerythrocytic stages of malaria parasites that infect mosquitoes. When gametocytes of the chicken malaria parasite Plasmodium gallinaceum are ingested by a mosquito they become extracellular in the mosquito midgut, form gametes, and fertilize within 10 to 15 min after the insect has taken a blood meal. Gametocytes of P. gallinaceum were infectious when fed to Aedes aegypti mosquitoes in blood meals containing native serum from chickens or from the non-host species, man or sheep. Gametocytes stimulated to undergo gametogenesis and to fertilize in vitro were also infectious when fed to mosquitoes in native chicken serum. However, native serum from most non-host species, including sheep and man, suppressed the infectivity of newly fertilized zygotes to mosquitoes and lysed the zygotes in vitro. These effects were shown to be due to the activity of the alternative pathway of complement (APC) in the serum of the non-host species. After mild trypsin treatment, the zygotes of P. gallinaceum no longer infected mosquitoes in the presence of native chicken serum, although in heat-inactivated chicken serum their infectivity was normal. We conclude that trypsin-sensitive components on the zygotes surface protect them from destruction by the APC of their native host. The ability of gametocytes of P. gallinaceum to infect mosquitoes in the presence of native human serum is probably due to proteases that inactivate the APC of human serum before the gametes and zygotes emerge as extracellular parasites in the blood meal.  相似文献   

16.
Mature exoerythrocytic forms (EEF) of Plasmodium falciparum from the chimpanzee were examined by light- and transmission electron microscopy from a liver biopsy taken on Day 6 after sporozoite inoculation. Infectivity of the sporozoites obtained from whole mosquitoes which were membrane fed on cultured gametocytes was about 4-6%. In comparison, salivary gland sporozoites added to human hepatocytes in vitro had only a developmental percentage of 0.02 to 0.05% at Day 5. The EEF found in the liver biopsy were not all at the same stage of development. Immature compact parasites were seen simultaneously with stages with fully formed merozoites, indicating a rapid final maturation or asynchrony. At Day 7.5, large numbers of rings were already seen in the peripheral blood, indicating a duration of the liver development of P. falciparum in the chimpanzee of about 5.5-6 days. The process of merogony at the fine structural level was comparable to that described for rodent and other primate parasites in vivo. Compared to the fine structure of EEF in vitro in cultured human hepatocytes, the parasites described here were much more advanced in development. There appeared to be some cell infiltration with collagen deposition around the intracellular parasite; however, no marked degeneration of EEF was observed.  相似文献   

17.
The effects of subcurative doses of chloroquine on rodent and human Plasmodium transmission to the mosquito have been studied by several authors who showed a short-term (12 h) enhancement of gametocyte infectivity by the drug, restricted to chloroquine-resistant strains, and a long term (4-6 days) enhancement of gametocytogenesis of chloroquine-sensitive strains of Plasmodium chabaudi. We investigated both short- and long-term effects of chloroquine on Plasmodium vinckei petteri, a chloroquine-sensitive rodent Plasmodium strain. Chloroquine treatment reduced the index of gametocytogenesis to 73% (5 mg/kg) and 55% (2.5 mg/kg) of controls, on day 6 post-infection (p.i.). The reduction was statistically significant with 5 mg/kg chloroquine. However, the reduction of gametocyte numbers did not affect the transmission capabilities of the strain. Our experiments showed that doses of 1 mg/kg chloroquine had no effect on the oocyst counts, 12 h post-administration to mice. A statistically non-significant 61% reduction of oocyst numbers was observed in mosquitoes fed on mice treated with 5 mg/kg chloroquine. The effect of 5 mg/kg chloroquine administration on the infectivity of gametocytes to mosquitoes fed 1 h post-treatment was also investigated. An overall 41% reduction of oocyst numbers was observed. This immediate effect was statistically significant in 73% of the mice. These results are consistent with the hypothesis that the short-term enhancing effect of chloroquine on transmission is restricted to the drug-resistant strains of Plasmodium.  相似文献   

18.
The protozoan parasite Plasmodium falciparum, responsible for the most severe form of malaria, is able to sequester from peripheral circulation during infection. The asexual stage parasites sequester by binding to endothelial cell receptors in the microvasculature of various organs. P. falciparum gametocytes, the developmental stages responsible for parasite transmission from humans to Anopheles mosquitoes, also spend the almost ten days necessary for their maturation sequestered away from the peripheral circulation before they are released in blood mainstream. In contrast to those of asexual parasites, the mechanisms and cellular interactions responsible for immature gametocyte sequestration are largely unexplored, and controversial evidence has been produced so far on this matter. Here we present a systematic comparison of cell binding properties of asexual stages and immature and mature gametocytes from the reference P. falciparum clone 3D7 and from a patient parasite isolate on a panel of human endothelial cells from different tissues. This analysis includes assays on human bone marrow derived endothelial cell lines (HBMEC), as this tissue has been proposed as a major site of gametocyte maturation. Our results clearly demonstrate that cell adhesion of asexual stage parasites is consistently more efficient than that, virtually undetectable of immature gametocytes, irrespectively of the endothelial cell lines used and of parasite genotypes. Importantly, immature gametocytes of both lines tested here do not show a higher binding efficiency compared to asexual stages on bone marrow derived endothelial cells, unlike previously reported in the only study on this issue. This indicates that gametocyte-host interactions in this tissue are unlikely to be mediated by the same adhesion processes to specific endothelial receptors as seen with asexual forms.  相似文献   

19.
Human chimeras are potentially invaluable models for hemoprotozoan parasites such as Plasmodium falciparum. The work presented assesses the susceptibility of immunomodulated NOD/LtSz-SCID mice to genetically distinct P. falciparum parasites. To this end, mice grafted with human erythrocytes were inoculated with two P. falciparum laboratory lines, 3D7 and Dd2 and four clinical isolates, ISCIII-230, ISCIII-231, ISCIII-381 and ISCIII-399. The results showed that, without a previous period of parasite adaptation, 100% of the inoculated mice developed an infection, generally self-limited, though some mice died. The parasitemias ranged from 0.05 to 8% and lasted an average of 19 days (15-26 days) depending on the line or isolate studied. Sexual forms of different maturity, stage II-IV and mature gametocytes were observed in the peripheral blood of mice in 22, 50, 25, 72 and 80% of the mice infected with Dd2, ISCIII-399, ISCIII-230, ISCIII-231 and ISCIII-381 isolates, respectively. The study of the clinical symptoms, the haematological parameters and the histopathological changes in the infected mice showed that most of the malaria features were present in the infected mice except that the sequestration of infected erythrocytes was absent or at most a minor phenomenon, as also indicated by the presence of mature forms of the parasites in the peripheral blood. This study shows that the human chimeras allow the complete asexual and sexual erythrocytic cycle of different P. falciparum lines and clinical isolates to be observed in vivo. It opens a new way to investigate any parasite population in terms of infectivity, transmission, and drug resistance.  相似文献   

20.
Experiments were carried out to determine the effect of partial host immunity against the rodent malaria parasite Plasmodium chabaudi on the transmission success of the parasite. There was a fourfold reduction in both the blood-stage, asexually replicating parasite density and the gametocyte (transmissable stage) density in immunized hosts. Some of the reduction in asexual parasite densities was due to strain-specific immunity, but there was no evidence that strain-specific immunity affected gametocyte densities. However, immunity did affect transmission in a strain-specific manner, with a fivefold reduction in gametocyte infectivity to mosquitoes in homologous challenges compared with heterologous challenges or non-immunized controls. This implies the existence of a mechanism of strain-specific infectivity-reducing immunity that does not affect the density of gametocytes circulating in peripheral blood. The proportion of asexual parasites that produced gametocytes increased during the course of infection in both non-immunized and in immunized hosts, but immunity increased gametocyte production early in the infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号