首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axons derived from young ganglion cells in the periphery of the retinae of larval and adult goldfish are known to fasciculate with one another and their immediate forerunners, creating the typical age-related order in the retinotectal pathway. Young axons express the E587 antigen, a member of the L1 family of cell adhesion molecules. Repeated injections of Fab fragments from a polyclonal E587 antiserum (E587 Fabs) into the eye of 3.4 cm goldfish disrupted the orderly fascicle pattern of RGC axons in the retina which was preserved in controls. Instead of bundling tightly, RGC axons crossed one another, grew between fascicles and arrived at the optic disk in a broadened front. When added to RGC axons growing in vitro, E587 Fabs neutralized the preference of growth cones to elongate on lanes of E587 protein, caused defasciculation of axons which normally prefer to grow along each other when explanted on polylysine, and prevented clustering of E587 antigen at axon-axon contact sites. Monoclonal E587 antibody disturbed axonal fasciculation moderately but led to a 30% reduction in growth velocities when axons tracked other axons. Therefore we conclude that E587 antigen mediates axonal recognition, selective fasciculation and the creation of the age- related order in the fish retina.  相似文献   

2.
Retinal ganglion cell axons and axonal electrical activity have been considered essential for migration, proliferation, and survival of oligodendrocyte lineage cells in the optic nerve. To define axonal requirements during oligodendrogenesis, the developmental appearance of oligodendrocyte progenitors and oligodendrocytes were compared between normal and transected optic nerves. In the absence of viable axons, oligodendrocyte precursors migrated along the length of the nerve and subsequently multiplied and differentiated into myelin basic protein-positive oligodendrocytes at similar densities and with similar temporal and spatial patterns as in control nerves. Since transected optic nerves failed to grow radially, the number of oligodendrocyte lineage cells was reduced compared with control nerves. However, the mitotic indices of progenitors and the percentage of oligodendrocytes undergoing programmed cell death were similar in control and transected optic nerves. Oligodendrocytes lacked their normal longitudinal orientation, developed fewer, shorter processes, and failed to form myelin in the transected nerves. These data indicate that normal densities of oligodendrocytes can develop in the absence of viable retinal ganglion axons, and support the possibility that axons assure their own myelination by regulating the number of myelin internodes formed by individual oligodendrocytes.  相似文献   

3.
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.  相似文献   

4.
Nona  S.N.  Thomlinson  A.M.  Bartlett  C.A.  Scholes  J. 《Brain Cell Biology》2000,29(4):285-300
Fish optic nerve fibres quickly regenerate after injury, but the onset of remyelination is delayed until they reach the brain. This recapitulates the timetable of CNS myelinogenesis during development in vertebrate animals generally, and we have used the regenerating fish optic nerve to obtain evidence that it is the axons, not the myelinating glial cells, that determine when myelin formation begins. In fish, the site of an optic nerve injury becomes remyelinated by ectopic Schwann cells of unknown origin. We allowed these cells to become established and then used them as reporters to indicate the time course of pro-myelin signalling during a further round of axonal outgrowth following a second upstream lesion. Unlike in the mammalian PNS, the ectopic Schwann cells failed to respond to axotomy and to the initial outgrowth of new optic axons. They only began to divide after the axons had reached the brain. Shortly afterwards, small numbers of Schwann cells began to leave the dividing pool and form myelin sheaths. More followed gradually, so that by 3 months remyelination was almost completed and few dividing cells were left. Moreover, remyelination occurred synchronously throughout the optic nerve, with the same time course in the pre-existing Schwann cells, the new ones that colonised the second injury, and the CNS oligodendrocytes elsewhere. The optic axons are the only common structures that could synchronise myelin formation in these disparate glial populations. The responses of the ectopic Schwann cells suggest that they are controlled by the regenerating optic axons in two consecutive steps. First, they begin to proliferate when the growing axons reach the brain. Second, they leave the cell cycle to differentiate individually at widely different times during the ensuing 2 months, during the critical period when the initial rough pattern of axon terminals in the optic tectum becomes refined into an accurate map. We suggest that each axon signals individually for myelin ensheathment once it completes this process.  相似文献   

5.
In submammalian animals including chicks, the retina contains oligodendrocytes (OLs), and axons in the optic fiber layer are wrapped with compact myelin within the retina; however, the expression of myelin genes in the chick retina has not been demonstrated yet. In the present study, we examined the expression of three myelin genes (proteolipid protein, PLP; myelin basic protein, MBP; cyclic nucleotide phosphodiesterase, CNP) and PLP in the developing chick retina, in comparison to the localization of Mueller cells. In situ hybridization demonstrated that all three myelin genes began to be expressed at E14 in the chick embryo retina. They are mostly restricted to the ganglion cell layer and the optic fiber layer, with a few exceptions in the inner nuclear layer where Mueller cells reside; however, PLP mRNA+ cells do not express glutamine synthetase, or vice versa. The present results elucidate that myelin genes are expressed only by OLs that are mostly localized in the innermost layer of the developing chick retina.  相似文献   

6.
Sarah Luse (1959) reported over 30 years ago on the presence of a bridge connecting the axon to the myelin sheath in the central nervous system (CNS). This notion has not been accepted in the literature. Wolman (1992) found that the progress of demyelination in some viral diseases affecting the CNS fits the concept of Luse, as the process occurred primarily along the major dense line of myelin, which is in continuity with the cytoplasm of the oligodendroglial cell. Injection of Lucifer yellow (LY) and horseradish peroxidase (HRP) into the vitreous of guinea pigs, with and without iontophoresis, resulted in labeling of the nerve axons and myelin. Labeling of myelin by HRP occurred along the major dense line which indicated that a transient or permanent cytoplasmic bridge connects axons and myelin in the optic nerve.  相似文献   

7.
The cellular mechanisms that regulate the topographic arrangement of myelin internodes along axons remain largely uncharacterized. Recent clonal analysis of oligodendrocyte morphologies in the mouse optic nerve revealed that adjacent oligodendrocytes frequently formed adjacent internodes on one or more axons in common, whereas oligodendrocytes in the optic nerve were never observed to myelinate the same axon more than once. By modelling the process of axonal selection at the single cell level, we demonstrate that internode length and primary process length constrain the capacity of oligodendrocytes to myelinate the same axon more than once. On the other hand, probabilistic analysis reveals that the observed juxtaposition of myelin internodes among common sets of axons by adjacent oligodendrocytes is highly unlikely to occur by chance. Our analysis may reveal a hitherto unknown level of communication between adjacent oligodendrocytes in the selection of axons for myelination. Together, our analyses provide novel insights into the mechanisms that define the spatial organization of myelin internodes within white matter at the single cell level.  相似文献   

8.
The substrate properties were compared between normal and myelin-deficient central nervous system (CNS) tissues by an in vitro assay of cell attachment and spreading. Fibroblasts (3T3) were plated onto culture substrata consisting of optic nerve tissue sections cut from normal or two myelin-deficient mutant mice, Shiverer and Quaking. Optic nerve sections from either of the mutant animals supported more 3T3 fibroblast spreading and adhesion than sections derived from animals with normal myelin. These results demonstrate that CNS myelin influences the ability of cells to attach and spread and that it is the actual presence of myelin which is inhibitory rather than the presence of optic nerve axons or oligodendrocytes.  相似文献   

9.
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79–80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2–11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 315–324, 1998  相似文献   

10.
The mAb E 21 recognizes a cell surface glycoprotein selectively associated with fish retinal ganglion cell axons that are in a state of growth. All retinal axons and ganglion cells in goldfish embryos stained for E 21. In adult fish, however, E 21 immunoreactivity exhibited a patterned distribution in ganglion cells in the marginal growth zone of the continuously enlarging fish retina and the new axons emerging from these cells in the retina, optic nerve, and optic tract. The E 21 antigen was absent from older axons, except the terminal arbor layer in the tectum, the Stratum fibrosum et griseum superficiale where it was uniformly distributed. Upon optic nerve transection, the previously unlabeled axons reacquired E 21 positivity as they regenerated throughout their path to the tectum. Several months after ONS, however, E 21 staining disappeared from the regenerated axons over most of their lengths but reappeared as in normal fish in the terminal arbor layer. The immunoaffinity-purified E 21 antigen, called Neurolin, has an apparent molecular mass of 86 kD and contains the HNK1/L2 carbohydrate moiety, like several members of the class of cell adhesion molecules of the Ig superfamily. The NH2-terminal amino acid sequence has homologies to the cell adhesion molecule DM-Grasp recently described in the chicken. Thus, retinal ganglion cell axons express Neurolin during their development and are able to reexpress this candidate cell adhesion molecule during axonal regeneration, suggesting that Neurolin is functionally important for fish retinal axon growth.  相似文献   

11.
Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin-associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins.  相似文献   

12.
The aim of this study is to investigate a fine structure of the retino-optic nerve junction in the chicken. We especially focused on the myelin sheaths and astrocytes in the intraocular optic nerve (ION) and its adjoining parts. A part of the axons of retinal nerve fiber layer (NFL) were myelinated. Ganglion cell axons were ensheathed by loose myelin in the NFL and by a compact one in the ION and optic nerve (ON). Myelin structure changed from loose type to a compact one within the very narrow NFL-ION junction. Loose myelin forming cells are dark type of oligodendrocytes in the retina. From the most peripheral ON to the choroidal part of ION, astrocytes contained abundant microtubules. The optic nerve around the lamina cribrosa is exposed to mechanical force during eye movement. It is suggested that these microtubules may perform the cytoskeletal function. Astrocytes in the retinal part of ION had longer processes filled with abundant gliofilaments. They may provide the mechanical support for the ganglion cell axons, which are exposed directly to intraocular pressure. Although astrocytes in the retinal level of ION extended their processes into the retina, their soma was never found in the retina.  相似文献   

13.
Nona  S. N.  Thomlinson  A. M.  Stafford  C. A. 《Brain Cell Biology》1998,27(11):791-803
Summary. In crushed goldfish optic nerve, regenerating axons cross the site of lesion within 10 days following injury. Some 30 days later, Schwann cells accumulate at the lesion, where they myelinate the new axons. In this study, we have used immunohistochemistry and electron microscopy to examine the cellular environment of the crush site prior to the establishment of Schwann cells in order to learn more about the early events that contribute to axonal regeneration. During the first week following injury, macrophages enter the site of lesion and efficiently phagocytose the debris. The infiltration of macrophages precedes the arrival of regenerating axons that abut and surround these phagocytes. Based on EM morphology and phagocytic capacity, macrophages of the type observed at the site of lesion are not present in the degenerating distal nerve segment, where debris clearance is shared between conventional microglia and astrocytes over a period of several weeks. During this period, axon bundles emerging distally from the injury zone become enwrapped by astrocyte processes, thereby re-establishing the characteristic fascicular cytoarchitecture of the optic nerve. The process of fasciculation also leads to the displacement of myelin debris to the margins of the fiber bundles, where it is trapped by the astrocytes. Our results suggest that the early robust appearance of macrophages at the lesion, and their effectiveness as phagocytes compared with the microglia distally, may contribute to the vigorous axonal regeneration across the crush, beyond which axons<197>excepting the pioneers<197>extend through newly formed debris-free channels delineated by astrocyte processes.  相似文献   

14.
We have used antibodies to identify Schwann cells and oligodendrocytes and to study the expression of myelin-specific glycolipids and proteins in these cells isolated from perinatal rats. Our findings suggest that only Schwann cells which have been induced to myelinate make detectable amounts of galactocerebroside (GC), sulfatide, myelin basic protein (BP), or the major peripheral myelin glycoprotein (P0). When rat Schwann cells were cultured, they stopped making detectable amounts of these myelin molecules, even when the cells were associated with neurites in short-term explant cultures of dorsal root ganglion. In contrast, oligodendrocytes in dissociated cell cultures of neonatal optic nerve, corpus callosum, or cerebellum continued to make GC, sulfatide and BP for many weeks, even in the absence of neurons. These findings suggest that while rat Schwann cells require a continuing signal from appropriate axons to make detectable amounts of myelin- specific glycolipids and proteins, oligodendrocytes do not. Schwann cells and oligodendrocytes also displayed very different morphologies in vitro which appeared to reflect their known differences in myelinating properties in vivo. Since these characteristic morphologies are maintained when Schwann cells and oligodendrocytes were grown together in mixed cultures and in the absence of neurons, we concluded that they are intrinsic properties of these two different myelin- forming cells.  相似文献   

15.
Neurofilaments are an important structural component of the axonal cytoskeleton and are made of neuronal intermediate filament (nIF) proteins. During axonal development, neurofilaments undergo progressive changes in molecular composition. In mammals, for example, highly phosphorylated forms of the middle- and high-molecular-weight neurofilament proteins (NF-M and NF-H, respectively) are characteristic of mature axons, whereas nIF proteins such as α-internexin are typical of young axons. Such changes have been proposed to help growing axons accommodate varying demands for plasticity and stability by modulating the structure of the axonal cytoskeleton. Xefiltin is a recently discovered nIF protein of the frog Xenopus laevis, whose nervous system has a large capacity for regeneration and plasticity. By amino acid identity, xefiltin is closely related to two other nIF proteins, α-internexin and gefiltin. α-Internexin is found principally in embryonic axons of the mammalian brain, and gefiltin is expressed primarily in goldfish retinal ganglion cells and has been associated with the ability of the goldfish optic nerve to regenerate. Like gefiltin in goldfish, xefiltin in Xenopus is the most abundantly expressed nIF protein of mature retinal ganglion cells. In the present study, we used immunocytochemistry to study the distribution of xefiltin during optic nerve development and regeneration. During development, xefiltin was found in optic axons at stage 35/36, before they reach the tectum at stage 37/38. Similarly, after an orbital crush injury, xefiltin first reemerged in optic axons after the front of regeneration reached the optic chiasm, but before it reached the tectum. Thus, during both development and regeneration, xefiltin was present within actively growing optic axons. In addition, aberrantly projecting retinoretinal axons expressed less xefiltin than those entering the optic tract, suggesting that xefiltin expression is influenced by interactions between regenerating axons and cells encountered along the visual pathway. These results support the idea that changes in xefiltin expression, along with those of other nIF proteins, modulate the structure and stability of actively growing optic axons and that this stability is under the control of the pathway which growing axons follow. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 811–824, 1997  相似文献   

16.
Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the RGC survival signaling pathway after optic nerve injury, we investigated cell survival/death signals such as Bcl-2 family members in the goldfish retina. Amounts of phospho-Akt (p-Akt) and phospho-Bad (p-Bad) in the goldfish retina rapidly increased four- to five-fold at the protein level by 3-5 days after nerve injury. Subsequently, Bcl-2 levels increased 1.7-fold, accompanied by a slight reduction in caspase-3 activity 10-20 days after injury. Furthermore, level of insulin-like growth factor-I (IGF-I), which activates the phosphatidyl inositol-3-kinase (PI3K)/Akt system, increased 2-3 days earlier than that of p-Akt in the goldfish retina. The cellular localization of these molecular changes was limited to RGCs. IGF-I treatment significantly induced phosphorylation of Akt, and strikingly induced neurite outgrowth in the goldfish retina in vitro. On the contrary, addition of the PI3K inhibitor wortmannin, and IGF-I antibody inhibited Akt phosphorylation and neurite outgrowth in an explant culture. Thus, we demonstrated, for the first time, the signal cascade for early upregulation of IGF-I, leading to RGC survival and axonal regeneration in adult goldfish retinas through PI3K/Akt system after optic nerve injury. The present data strongly indicate that IGF-I is one of the most important molecules for controlling regeneration of RGCs after optic nerve injury.  相似文献   

17.
Neurochemical Characteristics of Myelin-like Structure in the Chick Retina   总被引:1,自引:1,他引:0  
Abstract: Certain characteristics of myelin-like structures in the chick retina were examined morphologically and biochemically. Developmental changes of 2', 3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) in the chick retina and optic nerve were examined. The measurable activity in the retina was first detected at 16 days of incubation and thereafter, it increased rapidly until 4 weeks post-hatching. By contrast, CNPase activity in the optic nerve reached the maximum level at 4 days post-hatching and maintained a constant level thereafter. The purifed myelin fraction from the chick retina showed higher activity of CNPase, whereas its activity in the retinal homogenate was very low. Hence, it was considered that the myelin fraction from the chick retina is similar to that of CNS myelin with respect to CNPase. Protein profiles of the purified myelin fractions isolated from the chick optic tectum, optic nerve, retina and sciatic nerve were analysed by SDS-polyacrylamide gel elec-trophoresis. Myelin fractions from the chick optic tectum and optic nerve contained basic protein (BP) and Folch-Lees proteolipid protein (PLP). Myelin fraction from the chick sciatic nerve contained BP, P2 and two glycoproteins (PO and 23K). In contrast, retinal myelin fraction contained only BP. PLP, PO, 23K and P2 proteins were definitely undetectable. Electron micrographs revealed that some axons in the optic nerve fiber layer of the chick retina were wrapped by a spiral-structured myelin-like sheath, which showed some differences from those of CNS and PNS myelin sheaths. It was suggested that the origin of the myelin-like structure in the chick retina is other than from oligodendroglia or Schwann cells.  相似文献   

18.
Wallerian degeneration of the rabbit optic nerve was investigated by the technique of retinal ablation which precludes edema, hemorrhage, or macrophage infiltration. After 8 days of degeneration, marked degradation of axons and some myelin abnormalities appeared in the optic nerve, optic chiasma, and optic tract. Myelin lesions were maximal 32 days after retinal destruction. The amount of material stained with a myelin dye decreased drastically between 32 and 90 days after the operation. Biochemical parameters gave the following sequence of events. The concentration of the major periodic acid--Schiff staining glycoproteins was decreased after 2 days, and 6 days later the presence of cholesterol esters was detected in the optic tissue. After 16 days of Wallerian degeneration, the specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase not associated with myelin decreased, indicating a possible de-differentiation of oligodendrocytes. Degradation of myelin basic protein became significant at 32 days and the amount of myelin isolated decreased later. The loss of myelin basic protein coincided with a reduction of myelin periodicity as measured in purified fractions by electron microscopy. These results show that secondary myelin destruction in the absence of edema, hemorrhage, or macrophages is a very slow process, and in this situation myelin undergoes a selective and sequential loss of its constituents.  相似文献   

19.
The intermediate filament protein composition in glial cells of goldfish optic nerve differs from that found in glial cells of the goldfish spinal cord and brain. Brain and spinal cord glial cells contain glial fibrillary acidic protein (GFAP), whereas glial cells in the optic nerve contain ON3. The ON3 protein of the goldfish optic nerve was recently identified as the goldfish equivalent to the mammalian type II keratin 8 protein. In addition to the ON3 protein, the goldfish optic nerve also contains a 48-kDa protein. Immunoblotting experiments suggest that this protein is equivalent to the mammalian type I keratin 18 protein, which typically pairs with keratin 8 to form filaments. We show that these proteins are not specific to the optic nerve. The ON3 and 48-kDa proteins of the goldfish optic nerve share common antigenic properties with the predominant keratin pair expressed in the goldfish liver. These proteins are also expressed at low levels in the goldfish brain and spinal cord. In addition RNase protection assays and Northern blots indicate that the mRNA for the ON3 protein in optic nerve is identical to the message found in other goldfish tissues. The expression of ON3 was also examined in cultured glial cells from goldfish spinal cord and optic nerve and cultured fibroblast cells. Analysis of intermediate filament protein expression in cultured glial cells taken from goldfish spinal cord demonstrated the absence of GFAP in these cells and the expression of ON3. This protein was also the predominant intermediate filament protein of cultured optic nerve glial cells and fibroblasts. The differences in the expression of intermediate filament proteins in mammals and lower vertebrates are discussed. In addition, we discuss how the expression of a simple epithelial keratin pair in glial cells of the goldfish optic nerve may be associated with this system's capacity for continuous growth and regeneration.  相似文献   

20.
Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp), is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号