首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid HPLC method for quantification of mitoxantrone in mouse plasma and tissue homogenates in the presence of a liposome entrapped mitoxantrone formulation (LEM-ETU) is described. Sample preparation is achieved by protein precipitation of 100 microl plasma or 200 microl tissue homogenate with an equal volume of methanol containing 0.5 M hydrochloric acid:acetonitrile (90:10, v/v). Ametantrone is used as the internal standard (i.s.). Mitoxantrone and i.s. are separated on a C18 reversed phase HPLC column, and quantified by their absorbance at 655 nm. In plasma, the standard curve is linear from 5 to 1000 ng/ml, and the precision (%CV) and accuracy (percentage of nominal concentration) are within 10%. In mouse tissue (heart, kidney, liver, lung, and spleen) homogenates (5%, w/v), the standard curve is linear from 25 to 2000 ng/ml, with acceptable precision and accuracy. The method was used to successfully quantify mitoxantrone in mouse plasma and tissue samples to support a pharmacokinetic study of LEM-ETU in mice.  相似文献   

2.
A simple method for the quantification of tipranavir, a new non-peptidic protease-inhibitor, was developed. An internal standard, prazepam, was added to 100 microl of plasma before a liquid-liquid extraction by 3 ml of tert-butyl methyl ether. The extracts were evaporated to dryness and reconstituted with 100 microl of mobile phase before being injected in the chromatographic system. The separation was made on a C8 column using sodium acetate buffer (pH 5):methanol:acetonitrile (35:30:35, v/v/v) as mobile phase. The detection was performed at a wavelength of 260 nm. The method was linear and has been validated over a concentration range of 2-80 mg/l. The mean precision and accuracy of the method were respectively, 10.5 and -9.1%. The mean recovery was 70.8%.  相似文献   

3.
A sensitive HPLC method has been developed for the assay of imatinib in human plasma, by off-line solid-phase extraction followed by HPLC coupled with UV-Diode Array Detection. Plasma (750 microl), with clozapine added as internal standard, is diluted 3 + 1 with water and subjected to a solid-phase extraction on a C18 cartridge. After matrix components elimination with 2000 microl of water (in two aliquots of 1000 microl), imatinib is eluted with 3 x 500 microl MeOH. The resulting eluate is evaporated under nitrogen at room temperature and is reconstituted in 180 microl 50% methanol. A 50 microl volume is injected onto a Nucleosil 100-5 microm C18 AB column. Imatinib is analyzed using a gradient elution program with solvent mixture constituted of methanol and water containing both 0.05% ammonium acetate. Imatinib is detected by UV at 261 nm. The calibration curves are linear between 0.1 and 10 microg/ml. The limit of quantification and detection are 0.05 and 0.01 microg/ml, respectively. The mean absolute recovery of imatinib is 96%. The method is precise with mean inter-day CVs within 1.1-2.4%, and accurate (range of inter-day deviations -0.6 to +0.7%). The method has been validated and is currently being applied in a clinical study assessing the imatinib plasma concentration variability in a population of chronic myeloid leukemia- and gastro-intestinal stromal tumor-patients.  相似文献   

4.
An HPLC method was developed for the determination of a new oxazolidinone, DA-7867 (I), in human plasma and urine and in rat tissue homogenates. To 100 microl of biological sample, 300 microl acetonitrile and 50 microl methanol containing 10 microg/ml DA-7858 (the internal standard) were added. After vortex-mixing and centrifugation, the supernatant was evaporated under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of the mobile phase and a 50-microl aliquot was injected directly onto the reversed-phase (C(18)) column. The mobile phase, 20 mM KH2PO4:acetonitrile (75:25, v/v) was run at a flow rate of 1.5 ml/min and the column effluent was monitored by a UV detector set at 300 nm. The retention times of I and DA-7858 were approximately 6.5 and 8.7 min, respectively. The detection limits of I in human plasma and urine and in rat tissue homogenates were 20, 20, and 50 ng/ml, respectively.  相似文献   

5.
A sensitive and reproducible high performance liquid chromatography method with UV detection was described for the determination of aesculin in rat plasma. After deproteinization by methanol using metronidazole as internal standard (I.S.), solutes were evaporated to dryness at 40 degrees C under a gentle stream of nitrogen. The residue was reconstituted in 100 microl of mobile phase and a volume of 20 microl was injected into the HPLC for analysis. Solutes were separated on a Diamonsil C18 column (250 mm x 4.6 mm i.d., 5 microm particle size, Dikma) protected by a ODS guard column (10 mm x 4.0 mm i.d., 5 microm particle size), using acetonitrile-0.1% triethylamine solution (adjusted to pH 3.0 using phosphoric acid) (10:90, v/v) as mobile phase (flow-rate 1.0 ml/min), and wavelength of the UV detector was set at 338 nm. No interference from any endogenous substances was observed during the elution of aesculin and internal standard (I.S., metronidazole). The retention times for I.S and aesculin were 10.4 and 12.4 min, respectively. The limit of quantification was evaluated to be 57.4 ng/ml and the limit of detection was 24.0 ng/ml. The method was used in the study of pharmacokinetics of aesculin after intraperitoneal injection (i.p.) administration in rats.  相似文献   

6.
The aim of this study was to develop a rapid and sensitive HPLC method with UV detection for the estimation of imatinib from the plasma of patients with chronic myeloid leukemia (CML). The robustness of the method was checked by conducting first dose pharmacokinetics on blood samples from four patients who had been administered Gleevec (100 mg) in an oral dose. Samples were prepared in a simple and single step by precipitating the plasma proteins with methanol and injecting 50 microl aliquot from supernatant was subjected for analysis. Assay was conducted using a C8 column (250 mm x 4.6 mm, 5 microm particle size) under isocratic elution with 0.02 M potassium dihydrogen phosphate-acetonitrile (7:3, v/v) at a flow rate of 1 ml/min and detected using photodiode array at 265 nm. Calibration plots in spiked plasma were linear in a concentration range of 0.05-25 microg/ml. The inter and intra-day variation of standard curve was <4% (R.S.D.). This method could be a simple and quick method for the estimation of imatinib from the patient's plasma.  相似文献   

7.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of SCH 27899, an everninomycin antibiotic, in rat plasma. The method involved plasma protein precipation with acetonitrile, followed by reversed-phase HPLC analysis using a polymeric column and a mobile phase containing acetonitrile and ammonium phosphate, pH 7.8. The linear relationship between detector response and concentration was demonstrated with a correlation coefficient of larger than 0.996 at concentrations ranging from 0.2 to 100 μg/ml. The results showed that the HPLC method was accurate (bias ≤6%) and precise (coefficient of variation, C.V.≤6%). The limit of quantitation was 0.2 μg/ml with a C.V. of 2.6% and bias of 5%. SCH 27899 was stable in rat plasma at −20°C for at least 40 days. The HPLC method has been utilized for the determination of SCH 27899 in plasma samples from rats following single intravenous administration (3 mg/kg).  相似文献   

9.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of donepezil, a centrally and selectively acting acetyleholinesterase inhibitor, in human plasma. After sample alkalinization with 0.5 ml of NaOH (0.1 M), the test compound was extracted from I ml of plasma using isopropanol-hexane (3:97, v/v). The organic phase was back-extracted with 75 microl of HCl (0.1 M) and 50 microl of the acid solution was injected into a C18 STR ODS-II analytical column (5 microm, 150x4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.02 M, pH 4.6), perchloric acid (6 M) and acetonitrile (59.5:0.5:40, v/v) and was delivered at a flow-rate of 1.0 ml/min at 40 degrees C. The peak was detected using a UV detector set at 315 nm, and the total time for a chromatographic separation was approximately 8 min. The method was validated for the concentration range 3-90 ng/ml. Mean recoveries were 89-98%. Intra- and inter-day relative standard deviations were less than 7.3 and 7.6%, respectively, at the concentrations ranging from 3 to 90 ng/ml. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it could be successfully applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

10.
A simple, fast and reliable HPLC-UV method has been developed for the determination of dinitrocarbanilide residues in broiler liver. Liver samples (2 g) were extracted with two portions of acetonitrile (10 and 5 ml), defatted with hexane and evaporated to dryness under nitrogen. Extracts were reconstituted in acetonitrile-water (70/30, v/v, 500 microl), loaded onto C18 solid phase (SPE) cartridges and eluted with acetonitrile-water (70/30, v/v, 2.5 ml) into clean test-tubes. Extracts were evaporated to dryness and reconstituted in acetonitrile-water (80/20, v/v, 500 microl). An aliquot of the extract was assayed by high performance liquid chromatography (HPLC) with UV detection at 350 nm. The method was validated according to EU guidelines using liver tissues fortified at levels of 100, 200 and 300 microg/kg, with dinitrocarbanilide. The decision limit (CC(alpha)) and the detection capability (CC(beta)) were calculated from the within laboratory repeatability data to be 228 and 266 microg/kg, respectively. The mean recovery was typically >70% and the limits of quantitation was 12.5 microg/kg (based on the lowest standard on the calibration curve).  相似文献   

11.
A sensitive HPLC assay for all-trans-retinol, alpha-tocopherol, and gamma-tocopherols in human serum and plasma is reported. Sample preparation is performed in one step and involves precipitation of proteins and extraction of lipids with two volumes of an ethanol-chloroform mixture (3:1, v/v) without I.S. addition. After removal of the precipitated protein, 20 microl aliquots of the supernatant (equivalent to 6.7 microl of serum or plasma) were injected into the HPLC system and analyzed using fluorometric detection. RP-HPLC was performed using a C(18) S3 ODS2 column with a methanol-water step gradient (97:3 to 100) at 1.0 ml/min. The quantification limit expressed as nanograms of analyte per milliliter of serum or plasma was approximately 30 ng for all-trans-retinol, 300 ng for alpha-tocopherol and 250 ng for gamma- and delta-tocopherol. The method was validated and applied to human serum and plasma from a total of 120 subjects. This procedure requires a small volume of serum or plasma and can therefore be a valuable tool for measuring low concentrations of these vitamins in preterm infants with sensitivity, precision and accuracy.  相似文献   

12.
A fast, simple and selective HPLC method has been developed for the assay of aciclovir, ganciclovir, and penciclovir in human plasma by coupling HPLC with fluorescence detection. 200 microl plasma, with guanosine 5'-monophosphate as an internal standard, was subjected to protein precipitation with a 7% [v/v] aqueous perchloric acid solution. The 40 microl supernatant was injected into a Diamonsil-5 microm C18 column. Aciclovir, ganciclovir, and penciclovir, with solvents composed of methanol and 0.08% aqueous trifluoroacetic acid solution, were analysed by fluorescence detection at 260 nm (excitation) and 380 nm (emission) using a gradient elution program. The calibration curves of all three analytes were linear between 20 and 2000 ng/ml. The mean absolute recoveries of aciclovir, ganciclovir, and penciclovir were 93.91+/-1.20%, 97.42+/-0.75%, and 99.01+/-3.30%, respectively. The mean inter-day CVs for aciclovir, ganciclovir, and penciclovir, were within 1.29-7.30%, 1.00-5.53%, and 1.19-3.54%, respectively. The intra-day bias for aciclovir, ganciclovir, and penciclovir ranged from -2.01 to 6.33%, 1.81 to 7.37%, and 1.42 to 6.91%, respectively. The method has been validated and applied in pharmacokinetic studies in Chinese adult renal transplant patients.  相似文献   

13.
A sensitive HPLC method has been developed for the assay of aciclovir and ganciclovir in human plasma, by HPLC coupled with spectrofluorimetric detection. Plasma (1000 microl), with 9-ethyl-guanine added as internal standard, is submitted to protein precipitation with trichloroacetic acid solution 20%. The supernatant, evaporated to dryness at 37 degrees C, is reconstituted in 100 microl of a solution of sodium heptanosulfonate 0.4% adjusted with acetic acid to pH 2.60 and a 30 microl volume is then injected onto a Nucleosil 100-5 microm C18 column. Aciclovir and ganciclovir are analysed by spectrofluorimetric detection set at 260 nm (excitation) and 380 nm (emission) using a gradient elution program with solvents constituted of acetonitrile and a solution of sodium heptanosulfonate 0.4% adjusted to pH 2.60. The calibration curves are linear between 0.1 and 10 microg/ml. The mean absolute recovery of aciclovir and ganciclovir are 99.2+/-2.5 and 100.3+/-2.5%, respectively. The method is precise (with mean inter-day C.V.s within 1.0-1.6% for aciclovir and 1.2-3.5% for ganciclovir), and accurate (range of inter-day deviations -1.6 to +1.6% for aciclovir and -0.4 to -1.4% for ganciclovir). The method has been applied in stability studies of ganciclovir in patients' blood samples, demonstrating its good stability in plasma at -20 degrees C and at room temperature. The distribution of ganciclovir and aciclovir in plasma and red blood cells was also investigated in vitro in spiking experiments with whole blood, which showed an initial drop of ganciclovir and aciclovir levels in plasma (about -25%) due to the cellular uptake of aciclovir and ganciclovir by red blood cells. The method has been validated and is currently applied in a clinical study assessing the ganciclovir plasma concentration variability after administration of valganciclovir in a population of solid organ transplant patients.  相似文献   

14.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with positive electrospray ionization (ESI) was developed for the quantification of ranolazine in human plasma. After liquid-liquid extraction of ranolazine and internal standard (ISTD) phenoprolamine from a 100 microl specimen of plasma, HPLC separation was achieved on a Nova-Pak C(18) column, using acetonitrile-water-formic acid-10% n-butylamine (70:30:0.5:0.08, v/v/v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 428.5-->m/z 279.1 for ranolazine and m/z 344.3-->m/z 165.1 for the internal standard, respectively. Linear calibration curves were obtained in the concentration range of 5-4000 ng/ml, with a lower limit of quantitation (LLOQ) of 5 ng/ml. The intra- and inter-day precision values were below 3.7% and accuracy was within +/-3.2% at all three quality control (QC) levels. This method was found suitable for the analysis of plasma samples collected during the phase I pharmacokinetic studies of ranolazine performed in 28 healthy volunteers after single oral doses from 200 mg to 800 mg.  相似文献   

15.
Tadalafil is a potent reversible phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. This study describes a simple and sensitive high-performance liquid chromatographic (HPLC) method for the determination of tadalafil in 50 microl of rat plasma. Tadalafil and the internal standard lamotrigine were extracted with 0.5 ml of tert-butyl methyl ether, after the samples alkalinized with 20 microl of sodium hydroxide solution (1N). Chromatographic separation was achieved on a C18 column with the mobile phase of acetonitrile-water containing 20 mM phosphate buffer (pH 7) (35/65, v/v), at a flow rate of 1 ml/min. The eluant was detected at 290 nm. The retention time was about 4.5 min for lamotrigine and 15 min for tadalafil. No endogenous substances were found to interfere. Calibration curves were linear from 10 to 2000 ng/ml. The recovery of tadalafil from plasma was greater than 77%. The limit of quantitation was 10 ng/ml. The intra- and inter-day imprecision (expressed as coefficient of variation, C.V.) did not exceed 10.7%, and the accuracy was within 5.9% deviation of the nominal concentration. The method is suitable in pharmacokinetic investigation and monitoring tadalafil concentration.  相似文献   

16.
A simple and highly sensitive high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of lansoprazole enantiomers and their metabolites, 5-hydroxylansoprazole enantiomers and lansoprazole sulfone, in human plasma have been developed. Chromatographic separation was achieved with a Chiral CD-Ph column using a mobile phase of 0.5M NaClO(4)-acetonitrile-methanol (6:3:1 (v/v/v)). The analysis required only 100 microl of plasma and involved a solid-phase extraction with Oasis HLB cartridge, with a high extraction recovery (>94.1%) and good selectivity. The lower limit of quantification (LOQ) of this assay was 10 ng/ml for each enantiomer of both lansoprazole and 5-hydroxylansoprazole, and 5 ng/ml for lansoprazole sulfone. The coefficient of variation of inter- and intra-day assay was <8.0% and accuracy was within 8.4% for all analytes (concentration range 10-1000 ng/ml). The linearity of this assay was set between 10 and 1000 ng/ml (r2>0.999 of the regression line) for each of the five analytes. This method is applicable for accurate and simultaneous monitoring of the plasma levels of lansoprazole enantiomers and their metabolites in the renal transplant recipients.  相似文献   

17.
18.
An analytical method for the determination of artemether (A) and its metabolite dihydroartemisinin (DHA) in human plasma has been developed and validated. The method is based on high-performance liquid chromatography (HPLC) and electrochemical detection in the reductive mode. A, DHA and artemisinin, the internal standard (I.S.), were extracted from plasma (1 ml) with 1-chlorobutane—isooctane (55:45, v/v). The solvent was transferred, evaporated to dryness under nitrogen and the residue dissolved in 600 μl of water-ethyl alcohol (50:50, v/v). Chromatography was performed on a Nova-Pak CN, 4 μm analytical column (150 mm×3.9 mm I.D.) at 35°C. The mobile phase consisted of pH 5 acetate—acetonitrile (85:15, v/v) at a flow-rate of 1 ml/min. The analytes were detected by electrochemical detection in the reductive mode at a potential of −1.0 V Intra-day accuracy and precision were assessed from the relative recoveries (found concentration in % of the nominal value) of spiked samples analysed on the same day (concentration range 10.9 to 202 ng/ml of A and 11.2 to 206 ng/ml of DHA in plasma). The mean recoveries over the entire concentration range were from 96 to 100% for A with C .V. from 6 to 13%, from 92% to 100% for DHA (α-tautomer) with C .V. from 4 to 16%. For A, the mean recovery was 96% at the limit of quantitation (LOQ) of 10.9 ng/ml with a CV of 13%. For DHA, the mean recovery was 100% at the LOQ of 11.2 ng/ml with a CV of 16%.  相似文献   

19.
Mitoguazone is an antiproliferative agent used in chemotherapy. This study describes a simple and sensitive high-performance liquid chromatographic method for the determination of mitoguazone in 100 microl of plasma. Samples were deproteinized with 100 microl of a solution of internal standard (amiloride, 10 microg/ml) in acetonitrile. An aliquot of the supernatant was injected onto the column. HPLC separation was achieved on a silica column with the mobile phase of methanol-50 mM potassium phosphate buffer (pH 3)-triethylamine (80:20:0.3, v/v), at a flow-rate of 1 ml/min. The eluent was detected at 320 nm. The retention time was about 5.5 min for amiloride and 12 min for mitoguazone. No endogenous substances were found to interfere. Calibration curves were linear from 0.25 to 50 microg/ml. The absolute recoveries of mitoguazone and amiloride were both greater than 84%. The limit of quantitation was 0.25 microg/ml. The intra- and inter-day precision (expressed as RSD) was 5.8%, or less, and the accuracy was 94.7% of the nominal concentration. The method is suitable in pharmacokinetic investigation and monitoring mitoguazone concentration.  相似文献   

20.
An HPLC-UV analytical method for estimation of iohexol in human plasma was developed and validated. Protein precipitation and iohexol extraction from plasma (100 microl) was carried out by adding 800 microl perchloric acid (5%, v/v in water) containing iohexol related compound B as the internal standard followed by vortex mixing and centrifugation. The supernatant (90 microl) was then injected onto a microBondapak C(18) column (150 mm x 3.9 mm, 10 microm) maintained at 30 degrees C. The mobile phase comprised of various proportions of acetonitrile and water with a total run time of 12 min and the wavelength of the UV detector was set at 254 nm. The extraction recovery of iohexol from plasma was >95% and the calibration curve was linear (r(2)=0.99) over iohexol concentrations ranging from 10 to 750 microg/ml (n=8). The method had an accuracy of >92% and intra- and inter-day CV of <3.7% and <3.6%, respectively. The method reported is simple, reliable, precise, accurate and has the capability of being used for determination of iohexol in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号