首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对福建省惠安县不同林龄短枝木麻黄人工林不同发育阶段小枝单宁含量及氮磷再吸收率的研究,探讨了短枝木麻黄林分发育过程中的营养保存策略。结果表明,幼龄林(5年生)成熟小枝中的总酚(TP)、可溶性缩合单宁(ECT)总缩合单宁(TCT)含量及蛋白质结合能力(PPC)显著高于成熟林(21年生)和衰老林(38年生)。随着林分发育,成熟小枝中N含量显著升高,而P含量呈降低趋势。不同发育阶段林分成熟小枝中N:P比均大于20,且随着林龄的增加而升高。磷再吸收率(PRE)显著高于氮再吸收率(NRE),均以成熟林分最高。这表明短枝木麻黄小枝单宁含量与养分再吸收受林龄影响,其养分保存机制会随着林分生长发育的变化而进行调节。  相似文献   

2.
Despite a growing knowledge of nutrient limitation for mangrove species and how mangroves adapt to low nutrients, there is scant information about the relative importance of N:P ratio and leaf phenolics variability in determining nutrient conservation. In this study, we evaluated possible nutrient conservation strategies of a mangrove Rhizophora stylosa under nutrient limitation. 1. The leaf nutrient concentrations of R. stylosa changed with season, with the highest N concentration in winter and the highest P concentration in spring for both mature and senescent leaves. Leaf N and P concentrations decreased significantly during leaf senescence. Based on N:P ratios R. stylosa forest was N-limited. Accordingly, the nitrogen resorption efficiency (NRE) was significantly higher than phosphorus resorption efficiency (PRE) for the R. stylosa leaves during leaf senescence. The NRE and PRE both reached the highest in the autumn. Average N and P concentrations in the senescent leaves were 0.15% and 0.06% for R. stylosa, respectively, indicating a complete resorption of N and an incomplete resorption of P. There was a significant negative correlation between nitrogen resorption proficiency (NRP) and NRE, meanwhile phosphorus resorption proficiency (PRP) and PRE correlation was also highly significantly. 2. R. stylosa leaves contained relatively high tannin level. Total phenolics, extractable condensed tannins and total condensed tannins contents increased during leaf senescence, and changed between seasons. The lowest concentrations of total phenolics, extractable condensed tannins and total condensed tannins occurred in summer, total phenolics concentrations were inversely related to nitrogen or phosphorus concentrations. 3. Our results confirmed that resorption efficiency during leaf senescence depends on the type of nutrient limitation, and NRE was much higher than PRE under N-limited conditions. R. stylosa forest developed several nutrient conservation strategies in the intertidal coastline surroundings, including high nitrogen resorption efficiency, low nutrient losses and high tannins level.  相似文献   

3.
施肥对短枝木麻黄幼苗总酚和可溶性缩合单宁含量的影响   总被引:1,自引:0,他引:1  
Zhang LH  Lin YM  Ye GF 《应用生态学报》2010,21(8):1959-1966
研究了施用氮肥和磷肥对短枝木麻黄幼苗总酚(total phenolics,TP)和可溶性缩合单宁(extractable condensed tannin,ECT)含量的影响,探讨短枝木麻黄单宁形成的养分效应.结果表明:施加氮肥使短枝木麻黄幼苗小枝的TP和ECT含量显著降低,支持碳氮平衡假说和生长分化平衡假说,但对氮含量没有显著影响,从而导致TP/N和ECT/N降低;施加磷肥对TP和ECT含量没有显著影响;随着处理时间的延长,短枝木麻黄幼苗小枝TP含量升高了9.91%~14.32%,而ECT含量降低了14.32%~298.88%;TP或ECT与有机物质含量的关系则相反,表明不同类型单宁的合成途径不同,但由于TP和ECT均与氮含量无显著相关性,故不支持蛋白质竞争模型;在贫瘠土壤条件下,TP/N和ECT/N的水平较高,有利于提高短枝木麻黄的防御水平,降低凋落物的分解率,减少养分损失,从而保持较高的生产力.  相似文献   

4.
Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g?1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.  相似文献   

5.
Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem components and processes, we conducted a replicated in situ mesocosm experiment in Lagunita, a shallow pond located in the southwest region of the basin. Inorganic N and P were periodically added to mesocosms under three different N:P regimes (P only, N:P = 16 and N:P = 75) while the control mesocosms were left unamended. After three weeks of fertilization, more than two thirds of the applied P was immobilized into seston or sediment. The rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hypothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment significantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-fold compared to the unenriched control. With up to 76% of added N sequestered into the seston, it is suspected that the Lagunita microbial community also experienced strong N-limitation. However, when N and P were applied at N:P = 75, the microbes remained in a P-limitation state as in the untreated control. Two weeks after the last fertilizer application, seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concentrations remained elevated. Additionally, no P release from the sediment was observed in the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sensitive to nutrient perturbation because the biota is primarily P-limited and experiences a secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to justify the need for protection of CCB ecosystems and other low-nutrient microbe-dominated systems from anthropogenic inputs of both N and P.  相似文献   

6.

Background and Aims

The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient.

Methods

One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect.

Key Results

Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis.

Conclusions

Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.  相似文献   

7.
为获得马尾松幼苗最佳施肥配方,该文以1年生马尾松幼苗为试验材料,采用L16(43)正交设计,并通过测定幼苗苗高、地径、生物量、叶绿素含量、叶片N、P、K含量,探讨不同N、P、K配比施肥对马尾松幼苗生长特征影响。结果表明:(1)不同配比施肥处理间马尾松幼苗苗高、地径、生物量、质量指数、叶绿素和养分含量存在显著差异,其中,处理12生物量、质量指数、叶绿素a和总叶绿素含量、隶属值最高。(2)施N对幼苗生长及生理指标均有极显著影响;施K对苗高、地径、地上生物量、总生物量有显著影响,对叶绿素和针叶养分有极显著影响;施P对叶绿素a、叶绿素b、针叶N和P含量有极显著影响,对苗高、地下生物量、总叶绿素含量有显著影响。(3)施N对苗高、地径、地上生物量、总生物量、质量指数、叶绿素a含量、总叶绿素含量和针叶N含量的影响最大,K次之,P最小。各因素对地下生物量和针叶P含量的影响均表现为N>P>K。(4)N3水平利于幼苗苗高地径的生长及生物量的积累,N4水平利于叶绿素a和总叶绿素含量及针叶N、P含量的积累,P4水平利于生物量、叶绿素含量和养分P含量的积累...  相似文献   

8.
In tropical lakes relatively little is known about the general relationship between nutrient concentration and phytoplankton biomass. Using data from 192 lakes from tropical and subtropical regions we examine the relationship between total P (TP) and chlorophyll (Chl). The lakes are all located between 30° S to 31° N include systems in Asia, Africa, and North and South America but are dominated by Brazilian (n=79) and subtropical N. American (n=67) systems. The systems vary in morphometry (mean depth and lake area), trophic state as well total N (TN) to␣total P (TP) ratios and light extinction. Despite a nearly 500-fold range in TP concentrations (2–970 μg P l−1), there was a poorer relationship between log TP and log Chl (r 2=0.42) than is generally observed for temperate systems from either narrow or broad geographic regions. N limitation is not a likely explanation for the relatively weak TP–Chl relationship in the tropical–subtropical systems. Systems had high average TN:TP ratios and neither a multiple regression with log TP and log TN nor separating systems with high TN:TP (>17 by weight) improved the predictive power of the log TP–log Chl relationship.  相似文献   

9.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

10.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   

11.
Seedlings of Scots pine (Pinus sylvestris L.) of a northern provenance were cultivated in nutrient solution for 10 weeks in a climate chamber. The nutrient solution (renewed by solution exchange) contained 2.5, 10 or 50 mg N I?1. All other essential elements were added in optimal proportion to the nitrogen. Seedlings cultivated at 10 and 50 mg N I?1 were similar with respect to all characteristics studied. Seedlings cultivated at 2.5 mg N I?1 showed a lower growth rate, especially for the shoot, and an altered morphology, with high root:shoot ratios and long, slender roots. The nitrogen concentrations in shoot and needles as well as in whole seedlings were not significantly affected by the nitrogen supply, while the nitrogen concentrations in the roots were somewhat lower at 2.5 mg N I?1. Ribulose bisphosphate carboxylase (EC 4.1.1.39) activity and the concentrations of carboxylase, total and soluble protein and of chlorophyll in the needles were consistently much lower for seedlings cultivated at 2.5 mg N I?1, than for seedlings grown at higher nutrient levels. A close correlation was observed between activity and concentration of the carboxylase (r=0.95). Carboxylase activity and protein were more sensitive to a low nutrient supply than was chlorophyll. The data show how activity and concentration of ribulose bisphosphate carboxylase and the concentrations of soluble and total protein and of chlorophyll in needles of pine seedlings can be negatively affected by the nutrient supply, also when the nitrogen concentrations in the needles are close to those observed at optimal nutrient supply. It is suggested that pine seedlings store assimilated non-protein nitrogen in the needles when protein synthesis is under restraint. The nitrogen concentration in needles and seedlings could not be used as a measure of the physiological state of the seedlings.  相似文献   

12.
Abstract It is assumed that the phytochemistry of browse species protects their biomass and nutrients against herbivory. In this study we were primarily interested in (i) seasonal and phenology‐related variations in leaf chemistry, and (ii) chemistry‐related variations in the feeding behaviour of domestic goats. Such knowledge would guide management‐orientated modelling of browse–browser interactions in seasonal, subtropical zones where goats are abundant. The browse species studied were typical of semiarid savannas in southern Africa: Grewia occidentalis L. (Tiliaceae), Scutia myrtina (Burm. f) Kurz (Rhamnaceae), Diospyros lycioides Desf. ssp. lycioides (Ebenaceae), Rhus longispina Eckl. and Zeyh. (Anacardiaceae), Ehretia rigida (Thunb.) Druce (Boraginaceae) and Acacia karroo Hayne (Mimosoideae). Nitrogen (N), phosphorus (P), condensed tannins (CT), protein‐precipitating tannins (PPT), total phenols (TP), cellulose and lignin concentrations were estimated for each species during the late dormant and early growing seasons. N, P, CT and TP were elevated during the growth season, while cellulose, lignin and PPT decreased. Unlike cytoplasm contents, which varied seasonally, cell wall and vacuole contents varied both seasonally and among species. Except that seasonal variation in N of deciduous species was greater than that of evergreen species, leaf phenology was not related to variations in forage quality. Short‐term intake rates were not related to primary metabolite concentrations, but were positively related to secondary metabolites. Elevated intake rates of putative defences were concluded to be side‐effects of attempts by goats to increase nutrient intake rate, indicating tolerance of chemical defences. Without support for the hypothesis that chemical defences are correlated to canopy retention, we propose an alternative hypothesis, that defences are distributed among woody plants in semiarid, subtropical savannas according to shoot morphology because it affects the vulnerability of plant parts to browsers.  相似文献   

13.
Many ecologists and biogeochemists explore the interaction of the nitrogen (N) and phosphorus (P) cycles by addressing N:P ratios. While N:P ratios are recognized as broadly important to the composition and functioning of lotic ecosystems, the fundamental controls on stream water N:P ratio variation remains poorly understood. Low N:P ratio (less than 16) streams appear more likely in arid climates than in mesic climates, suggesting possible hydrologic or landscape controls. We explored the importance of watershed hydrology to the variation of total N to total P (TN:TP) ratios in stream water, and whether such variation is characteristically different across watershed classes based on mean annual precipitation and median observed TN:TP ratio. Nonparametric scatter plot analysis was applied to normalized TN:TP ratios and associated discharge (Q) measurements from 57 minimally-impacted watersheds from the contiguous United States. At the seasonal scale, TN:TP ratios showed a negative relationship with Q in semiarid climates and a positive relationship with Q in humid climates. Over storm event scales, TN:TP ratios decline with increasing Q across all watershed classes. The results broadly indicate hydrology is an important driver of TN:TP ratio variation over multiple time scales. We hypothesize that the broad differences across watershed classes are driven by variation in the nature of connectivity (frequency and magnitude of connections) of the landscape to streams. A strong physical control of N:P ratios in stream water is in stark contrast to the biological control of N:P ratios in the oceans, suggesting that application of stoichiometric theory—developed using marine systems—to lotic systems requires a broader consideration of controlling factors.  相似文献   

14.
We examined the extent to which carbon investment into secondary compounds in loblolly pine (Pinus taeda L.) is changed by the interactive effect of elevated CO2 and N availability and whether differences among treatments are the result of size-dependent changes. Seedlings were grown for 138 days at two CO2 partial pressures (35 and 70 Pa CO2) and four N solution concentrations (0.5, 1.5, 3.5, and 6.5 mmol l−1 NO3NH4) and concentrations of total phenolics and condensed tannins were determined four times during plant development in primary and fascicular needles, stems and lateral and tap roots. Concentrations of total phenolics in lateral roots and condensed tannins in tap roots were relatively high regardless of treatment. In the smallest seedlings secondary compound concentrations were relatively high and decreased in the initial growth phase. Thereafter condensed tannins accumulated strongly during plant maturation in all plant parts except in lateral roots, where concentrations did not change. Concentrations of total phenolics continued to decrease in lateral roots while they remained constant in all other plant parts. At the final harvest plants grown at elevated CO2 or low N availability showed increased concentrations of condensed tannins in aboveground parts. The CO2 effect, however, disappeared when size differences were adjusted for, indicating that CO2 only indirectly affected concentrations of condensed tannins through accelerating growth. Concentrations of total phenolics increased directly in response to low N availability and elevated CO2 in primary and fascicular needles and in lateral roots, which is consistent with predictions of the carbon-nutrient balance (CNB) hypothesis. The CNB hypothesis is also supported by the strong positive correlations between soluble sugar and total phenolics and between starch and condensed tannins. The results suggest that predictions of the CNB hypothesis could be improved if developmentally induced changes of secondary compounds were included. Received: 27 March 1997 / Accepted: 25 July 1997  相似文献   

15.
Young potted seedlings of the Mediterranean evergreen sclerophyll Ceratonia siliqua were grown in the field under two nutrient and water regimes during the spring growth period. As expected, plants receiving additional nutrients accumulated more above and below ground biomass while the reverse was true for water stressed plants. In accordance with the growth–differentiation balance hypothesis, total leaf phenolics and tannins (astringency) decreased under high nutrients and increased under water stress, with the effects being more pronounced in young leaves. However, the responses of the two tannin types to resource availability were not similar. Only condensed tannins were decreased by nutrient addition while both condensed and gallotannins were increased by water stress. This non-homogeneous behaviour may reflect the different biosynthetic origins of the two tannin types.  相似文献   

16.
刘冬  张剑  包雅兰  赵海燕  陈涛 《生态学报》2020,40(11):3804-3812
土壤水分是影响干旱区植物养分吸收和利用策略的关键因子之一。研究不同水分梯度叶片与土壤生态化学计量特征,有助于揭示植物对环境变化的响应特征及生态适应性。通过野外调查与实验分析,对敦煌阳关不同水分梯度芦苇叶片与土壤碳(C)、氮(N)、磷(P)生态化学计量特征及其关系进行了研究。结果表明:(1)随土壤含水率升高,叶片C、N、P含量降低,叶片C/N、C/P、N/P升高。(2)随土壤含水率升高,土壤有机碳(OC)、总氮(TN)、总磷(TP)含量及土壤N/P升高,土壤C/N降低,土壤C/P先升后降。(3)低水分梯度叶片N、C/N与土壤N、C/N显著负相关(P0.05),叶片C、P、C/P、N/P与土壤C、P、C/P、N/P无显著相关性(P0.05);高、中水分梯度叶片C、N、P与土壤C、N、P化学计量特征相关性均不显著(P0.05)。低水分梯度叶片受干旱胁迫和土壤养分制约,且能够保持较高的叶养分含量,体现了干旱区湿地植物异质生境下独特的养分调节机制。  相似文献   

17.
Background and Aims Differences in the chemical and physical traits of plants caused by both genetic and habitat characteristics may influence attack by herbivores. Leaves of Qualea parviflora (Vochysiaceae), a common tree of different habitats in the Brazilian Neotropical savannas (cerrado), are susceptible to severe attack by herbivorous free-living and gall-forming insects. Attack by free-living and gall-forming insects within and between populations of Q. parviflora were examined and it was determined to what extent genetic variability (detected by RAPD markers), phenotypic characteristics of the plants and habit traits influence the number of free-living and gall-forming insect species and individuals attacking the plants, and the intensity of attack.• Methods On four occasions in 2000, leaves were sampled from ten individual trees in each of three types of vegetation in the cerrado: campo sujo, cerrado sensu stricto and cerradão at the Ecological Station of Pirapitinga (ESP), in Três Marias, north-western Minas Gerais, Brazil. Genetic variability was detected by RAPD markers, and concentrations of nutrients, phenols and tannins, sclerophylly and pre-dawn water potential of leaves were measured. Water and nutrient contents in the soil below each tree characterized the habitat. The free-living and gall-forming herbivorous insects were determined.• Key Results Of 69 RAPD markers analysed, 41 were polymorphic and were used for analyses of genetic variability of Q. parviflora. Most of the variability occurred within habitats, accounting for 97·65 % of the genetic variability. Plants in the cerrado sensu stricto and campo sujo were the most similar. There were no significant associations between genetic similarity and the chemical and physical traits of Q. parviflora, or with habitat, nor was there significant correlation between phenotypic and habitat traits. Increasing concentrations of tannins and sulphur, C : N ratio and sclerophylly correlated with increasing percentage of leaf area damaged by herbivores. Decreased sclerophylly, concentration of tannins and C : N ratio, and increased concentration of nutrients in leaves correlated with increased severity of attack by gall-forming insects.• Conclusions Nutrient concentration in the soil had more influence, indirectly, on free-feeding insects than did composition of Q. parviflora leaves. However, gall-forming insects are affected more by leaf quality, attacking fewer sclerophyllous leaves, with larger nutrient but smaller tannin concentrations.Key words: Cerrado, genetic variability, gall attack, herbivory, insect galls, plant quality, Qualea parviflora, RAPD, Vochysiaceae  相似文献   

18.
The flavonoids and phenolics of four Casuarina species were studied. Fourteen glycosides of kaempferol and quercetin, cupressuflavone, condensed and hydrolysable tannins were identified. The results indicate that C. cunninghamiana, C. glauca and C. stricta are closely related while C. equisetifolia differs mainly quantitatively from the other three.  相似文献   

19.
《Biological Wastes》1990,31(2):137-144
Tannins were determined by various chemical and biological methods in 15 agro-industrial by-products. Tannins in terms of total phenols (TP), condensed tannins (CT) and protein-precipitation capacity (PPC) were very high in Acacia nilotica and Theobroma cacao pods, Mangifera indica seed kernel, Panicum miliaceum polish and cakes of Madhuca indica seed and Garcinia indica. The correlation coefficients of PPC (measure of biological activity) with TP (0·81), degree of polymerisation (−0·83) and protein-precipitable phenolics (0·96) were significant (P < 0·05), but that with CT (0·34) was not significant. It is inferred that TP rather than CT contribute significantly towards PPC and that highly-polymerised tannins do not bind proteins as efficiently as the lesser-polymerised ones.The TP and CT were low in pods of Prosopis juliflora and Pithecolobium saman, Cassia tora seeds, cakes of Guizotia abyssinica, Pongamia glabra, Schleichera oleosa, Hevea brasiliensis and Hibiscus cannabinus and Panicum miliaceum bran. The PPC could not be detected in these by-products, suggesting that these nine by-products can be considered safe for incorporation in livestock feed, subject to absence of other deleterious factors.  相似文献   

20.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号