首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudolaric acid B (1) is a natural product with potent antifungal activity. We discovered that pseudolaric acid B did not kill but only suppress the growth of the filamentous fungus Chaetomium globosum. It was proposed that pseudolaric acid B was converted to metabolites with decreased antifungal activities. In this study, a scaled-up biotransformation of pseudolaric acid B by C. globosum produced five metabolites, including three new compounds, pseudolaric acid I (2), pseudolaric acid B 18-oyl-alanine (4) and pseudolaric acid B 18-oyl-serine (6), together with two known compounds, pseudolaric acid F (3) and pseudolaric acid B 18-oyl-glycine (5). The structures were characterized by NMR and MS spectroscopy. The major biotransformation reaction was conjugation with amino acids. None of the metabolites showed inhibitory effects on the growth of Candida albicans. The results suggested that biotransformation might be a detoxification process for fungi to resist antifungal drugs.  相似文献   

2.

Aim

To investigate the inhibitory effect of pseudolaric acid B on subcutaneous xenografts of human gastric adenocarcinoma and the underlying molecular mechanisms involved in its multidrug resistance.

Methods

Human gastric adenocarcinoma SGC7901 cells and drug-resistant SGC7901/ADR cells were injected into nude mice to establish a subcutaneous xenograft model. The effects of pseudolaric acid B with or without adriamycin treatment were compared by determining the tumor size and weight. Cyclo-oxygenase-2, protein kinaseC-α and P-glycoprotein expression levels were determined by immunohistochemistry and western blot.

Results

Pseudolaric acid B significantly suppressed the tumor growth induced by SGC7901 cells and SGC7901/ADR cells. The combination of pseudolaric acid B and the traditional chemotherapy drug adriamycin exhibited more potent inhibitory effects on the growth of gastric cancer in vivo than treatment with either pseudolaric acid B or adriamycin alone. Protein expression levels of cyclo-oxygenase-2, protein kinaseC-α and P-glycoprotein were inhibited by pseudolaric acid B alone or in combination with adriamycin in SGC7901/ADR cell xenografts.

Conclusion

Pseudolaric acid B has a significant inhibitory effect and an additive inhibitory effect in combination with adriamycin on the growth of gastric cancer in vivo, which reverses the multidrug resistance of gastric neoplasm to chemotherapy drugs by downregulating the Cox-2/PKC-α/P-gp/mdr1 signaling pathway.  相似文献   

3.
A series of 1,3 -bis-anilides of 4-hydroxyisophthalic acid was prepared and tested for antibacterial and antifungal activity. The prepared compounds (I-XVIII), of general structure (A), (Formula: see text) where Xn = H (I); 2-F (II); 3-F (III); 4-F (IV); 2-Cl (V); 3-Cl (VI); 4-Cl (VII); 2-Br (VIII); 3-Br (IX); 4-Br (X); 2-J (XI); 3-J (XII); 4-J (XIII); 2,5-Cl2 (XIV); 2,4-Br2 (XV); 2,3,4-Cl3 (XVI), 2,4,5-Cl3 (XVII); 2,4,6-Cl3 (XVIII), were investigated for the purpose of determining the effect of halogen-substitution on the aniline rings of (A). All of these compounds were prepared in satisfactory hield by reaction of 4-hydroxyisophthalic acid with the appropriate aromatic amine at 175 degrees for 3 hours. The 1,3-bis-anilides prepared in this investigation were screened for antimicrobial activity by a disk-diffusion assay (Kirby-Bauer modified). The organisms used were laboratory cultures of S. aureus, B. subtilis, B. anthracis, M. paratuberculosis 607, E. coli Bb, S. typhi, S. typhimurium, S. paratyphi B, Pr. vulgaris, Kl. pneumoniae, Ps. aeruginosa, C. albicans, and A. niger. The results of this investigation indicated that most of the 1,3-bis-(halogen-anilides) of 4-hydroxyisophthalic acid had little or no antifungal activity "in vitro", while showed significant activity against Gram+ and Gram- bacteria. Some fluoro-derivatives showed inhibitory activity especially toward S. aureus and M. paratuberculosis. Iodo-derivatives showed broad-spectrum "in vitro" antimicrobial activity, and had some antifungal activity.  相似文献   

4.
绿僵菌SC0924酚酸类代谢产物及其抗荔枝霜疫霉活性   总被引:1,自引:0,他引:1  
从绿僵菌SC0924固体发酵物中分离得到8个酚酸类化合物,通过波谱分析,分别鉴定为香草酸(1)、丁香酸(2)、邻氨基苯甲酸(3)、苯乙酸(4)、阿魏酸(5)、二氢阿魏酸(6)、2-羟基-3-苯丙酸(7)和2-羟基-3-对羟基苯丙酸丁酯(8).以滤纸片琼脂扩散法对以上化合物进行抗荔枝霜疫霉活性试验,结果表明除化合物2和6外,其余化合物均有抑菌活性.  相似文献   

5.
Viet nam is known as an endemic area of melioidosis but its etiologic agent originated in Viet nam was not extensively studied. For the first time, we analyzed the cellular lipid and fatty acid compositions of 15 Vietnamese isolates of Burkholderia pseudomallei, 10 from humans and 5 from the environment. Cellular lipid compositions were analyzed by two-dimensional thin-layer chromatography on silica gel G plates. Cellular fatty acid methyl esters were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major lipids in all the isolates were phosphatidylglycerol (PG), two forms of phosphatidylethanolamine (PE-1 and PE-2), and two forms of ornithine-containing lipid (OL-1 and OL-2). PE-1 contained non-hydroxy fatty acids at both sn-1 and ?2 positions, while PE-2 possessed 2-hydroxy fatty acids and non-hydroxy fatty acids in a ratio of 1: 1. Since snake venom phospholipase A2 digestion of PE-2 liberated 2-hydroxy fatty acids, it was confirmed that these acids are at the sn-2 position of glycerol moiety. In both OL-1 and OL-2, amide-linked fatty acid was 3-hydroxy palmitic acid (3-OH-C16: 0), while ester-linked fatty acids were non-hydroxy acids in OL-1 and 2-hydroxy acids in OL-2. The total cellular fatty acid compositions of the test strains were characterized by the presence of 2-hydroxy palmitic (2-OH-C16: 0), 2-hydroxy hexadecenoic (2-OH-C16: 1), 2-hydroxy octadecenoic (2-OH-C18: 1), 2-hydroxy methylene octadecanoic (2-OH-C19CPA), 3-hydroxy myristic (3-OH-C14: 0) and 3-hydroxy palmitic (3-OH-C16: 0) acids. There were significant differences in the concentration of hexadecenoic (C16: 1), methylene hexadecanoic (C17CPA), octadecenoic (C18: 1) and methylene octadecanoic (C19CPA) acids among the Vietnamese isolates of B. pseudomallei. However, no significant difference was observed in cellular lipid and fatty acid components between strains of human and environmental origins.  相似文献   

6.
Thirteen different chitin-degrading bacteria were isolated from soil and sediment samples. Five of these strains (SGE2, SGE4, SSL3, MG1, and MG3) exhibited antifungal activity against phytopathogenic fungi. Analyses of the 16S rRNA genes and the substrate spectra revealed that the isolates belong to the genera Bacillus or Streptomyces. The closest relatives were Bacillus chitinolyticus (SGE2, SGE4, and SSL3), B. ehimensis (MG1), and Streptomyces griseus (MG3). The chitinases present in the culture supernatants of the five isolates revealed optimal activity between 45°C and 50°C and at pH values of 4 (SSL3), 5 (SGE2 and MG1), 6 (SGE4), and 5–7 (MG3). The crude chitinase preparations of all five strains possessed antifungal activity. The chitinase of MG3 (ChiIS) was studied further, since the crude enzyme conferred strong growth suppression of all fungi tested and was very active over the entire pH range tested. The chiIS gene was cloned and the gene product was purified. The deduced protein consisted of 303 amino acids with a predicted molecular mass of 31,836 Da. Sequence analysis revealed that ChiIS of MG3 is similar to chitinases of Streptomyces species, which belong to family 19 of glycosyl hydrolases. Purified ChiIS showed remarkable antifungal activity and stability.  相似文献   

7.
Preliminary differentiating screening of the antibacterial and antifungal activity of a series of diastereomeric cis/trans-3-aryl(heteroaryl)-3,4-dihydroisocoumarin-4-carboxylic acids (3a-i) was performed by the agar diffusion method against twelve microorganism strains of different taxonomic groups. S. aureus and A. niger were the most sensitive strains to the antibiotic effect of the tested compounds, both inhibited by 10 of 12 compounds. The most potent antibacterial agent was cis-3-phenyl-3,4-dihydroisocoumarin-4-carboxylic acid (cis-3a), exhibiting activity against all seven bacterial test strains.  相似文献   

8.
A structural comparison between the A and B subunits of the five tetrameric Griffonia simplicifolia I isolectins (A4, A3B, A2B2, AB3, B4) was undertaken to determine the extent of homology between the subunits. The first 25 N-terminal amino acids of both A and B subunits were determined following the enzymatic removal of N-terminal pyroglutamate blocking groups with pyroglutamate aminopeptidase. Although 21 amino acids were common to both subunits, there were four unique amino acids in the N-terminal sequence of A and B. Residues 8, 9, 17, and 19 were asparagine, leucine, lysine, and asparagine in subunit A and threonine, phenylalanine, glutamic acid, and serine in subunit B. The last six C-terminal amino acids, released by digestion with carboxypeptidase Y, were the same for both subunits: Arg-(Phe, Val)-Leu-Thr-Ser-COOH. Subunit B, which contains one methionyl residue, was cleaved by cyanogen bromide into two fragments, a large (Mr = 31,000) and a small (Mr = 2700) polypeptide. Failure of the small fragment to undergo manual Edman degradation indicated an N-terminal blocking group, presumably pyroglutamate. Both subunits were digested with trypsin and the tryptic peptides were analyzed using reverse-phase HPLC. Tryptic glycopeptides were identified by labeling the carbohydrate moiety of the A and B subunit using sodium [3H] borohydride. Cysteine-containing tryptic peptides were similarly identified by using [1-14C]iodoacetamide. Approximately 30% of the tryptic peptides were common to both subunits. Thus, although the N- and C-terminal regions of A and B are similar, the subunits each possess unique sequences.  相似文献   

9.
We have shown that after immunization of homozygous a1 rabbits of the B immunoglobulin (Ig) heavy chain haplotype with anti-a2 antibody (Ab) a population of molecules appears that has all of the serologic characteristics of the a2 allotype. We have now isolated these putative latent a2 molecules, have separated the heavy chains, and after enzymatic deblocking, have determined the first 19 N-terminal amino acids. For all eight allotype-associated residues, these putative latent a2 molecules have the amino acid residues typical of a2 allotype. As expected, the preimmune IgG from this a1a1 rabbit has the amino acids typical of the a1 allotype. Thus by partial amino acid sequence analysis, we provide additional evidence that the latent a2 allotype can be induced in a1a1 rabbits of the B heavy chain haplotype by immunization with anti-a2 Ab. Rabbits of other heavy chain haplotypes were also immunized with anti-a2 Ab and were tested for their ability to synthesize latent a2 allotype. Thus far, a1a1 rabbits of the A, B, C, and I heavy chain haplotypes all synthesize latent a2 allotype. In contrast, a3a3 rabbits of the G and H heavy chain haplotypes did not synthesize latent a2 allotype.  相似文献   

10.
We have purified two 28-kDa chitinases, designated Chitinase A (Chit A) and Chitinase B (Chit B), from maize seeds to homogeneity and isolated cDNA clones encoding these two enzymes using an oligonucleotide probe based on an amino acid sequence of a peptide derived from Chit A. Although these two enzymes share 87% homology in their amino acid sequences, which were deduced from the nucleotide sequences of the isolated cDNA clones, they are significantly different in their biochemical and in vitro antifungal activities. When tested in vitro for antifungal activity against the growth of Trichoderma reesei, Alternaria solani, and Fusarium oxysporum, Chit A showed greater antifungal activity than Chit B. The specific activity of Chit A was determined to be 3-fold higher than that of Chit B. Chit A also had a 10-fold lower binding constant (Kd) against the substrate analogue N,N',N',N'-tetraacetyl chitotetrose than Chit B, indicating that the two enzyme may differ in their affinities for binding to the substrate chitin. Comparison of the amino acid sequences of maize seed chitinases with those of previously published chitinases from monocot and dicot plants indicates that maize seed chitinases have diverged significantly from other chitinases.  相似文献   

11.
Epoxidation and hydroxylation of arachidonic acid (AA) are both catalyzed by cytochromes P450s (CYPs). The oxidized metabolites are known to be involved in the regulation of vascular tone and renal function. By using a panel of 15 human recombinant CYPs, this study demonstrates that other polyunsaturated long-chain fatty acids (PUFA-LC), especially the ω3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are also epoxidised. The regioselectivity of epoxidation of four PUFA-LC by CYPs was investigated. Among the several CYPs tested, CYP2C9/2C19 and 1A2 were the most efficient in EPA and DHA epoxidations. It ensued that 10 μM of these two ω3 fatty acids decreased by more than 80% and 60%, respectively, the formation by CYP2C9 of AA-epoxidised derivatives. These findings suggest that some physiological effects of ω3 fatty acids may be due to a shift in the generation of active epoxidised metabolites of AA through CYP-mediated catalysis.  相似文献   

12.
2-Formylphenylboronic acid and four isomeric fluoro-2-formylphenylboronic acids have been found active against a series of fungal strains: Aspergillus, Fusarium, Penicillium and Candida. The level of antifungal activity was evaluated by agar diffusion tests as well as the determination of minimum inhibitory concentrations (MICs) by serial dilution method. Among the tested compounds, 4-fluoro-2-formylphenylboronic acid – an analogue of the known antifungal drug Tavaborole (AN2690) – proved to be the most potent antifungal agent. The tautomeric equilibrium leading to the formation of 3-hydroxybenzoxaboroles as well as the position of the fluorine substituent were revealed to play a crucial role in the observed activity.  相似文献   

13.
Yao HT  Chang YW  Lan SJ  Chen CT  Hsu JT  Yeh TK 《Life sciences》2006,79(26):2432-2440
The inhibitory effect of saturated fatty acids (SFAs): palmitic acid (PA), stearic acid (SA) and polyunsaturated fatty acids (PUFAs): linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on six human drug-metabolizing enzymes (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4) was studied. Supersomes from baculovirus-expressing single isoforms were used as the enzyme source. Phenacetin O-deethylation (CYP1A2), diclofenac 4-hydroxylation (CYP2C9), mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1) and midazolam 1-hydroxylation (CYP3A4) were used as the probes. Results show that all the five examined PUFAs competitively inhibited CYP2C9- and CYP2C19-catalyzed metabolic reactions, with Ki values ranging from 1.7 to 4.7 microM and 2.3 to 7.4 microM, respectively. Among these, AA, EPA and DHA tended to have greater inhibitory potencies (lower IC(50) and Ki values) than LA and LN. In addition, these five PUFAs also competitively inhibited the metabolic reactions catalyzed by CYP1A2, 2E1 and 3A4 to a lesser extent (Ki values>10 microM). On the other hand, palmitic and stearic acids, the saturated fatty acids, had no inhibitory effect on the activities of six human CYP isozymes at concentrations up to 200 microM. Incubation of PUFAs with CYP2C9 or CYP2C19 in the presence of NADPH resulted in the decrease of PUFA concentrations in the incubation mixtures. These results indicate that the PUFAs are potent inhibitors as well as the substrates of CYP2C9 and CYP2C19.  相似文献   

14.
Schiff bases (imines or azomethines) are versatile ligands synthesized from the condensation of amino compounds with active carbonyl groups and used for many pharmaceutical and medicinal applications. In our study, we aimed to determine the cytotoxic, antifungal and larvicidal activities of biologically potent bis-sulfonamide Schiff base derivatives that were re-synthesized by us. For this aim, 16 compounds were re-synthesized and tested for their cytotoxic, antifungal and larvicidal properties. Among this series, compounds A1B2 , A1B4 , A4B2 , A4B3 , and A4B4 were shown to have cytotoxic activity against tested cancer lung cell line (A549). The most potent antifungal activity was observed in compounds A2B1 and A2B2 against all fungi. A1B1 showed the strongest larvicidal effect at all concentrations at the 72nd h (100% mortality). These obtained results demonstrate that these type of bis-substituted compounds might be used as biologically potent pharmacophores against different types of diseases.  相似文献   

15.
Sourdough lactic acid bacteria were selected for antifungal activity by a conidial germination assay. The 10-fold-concentrated culture filtrate of Lactobacillus plantarum 21B grown in wheat flour hydrolysate almost completely inhibited Eurotium repens IBT18000, Eurotium rubrum FTDC3228, Penicillium corylophilum IBT6978, Penicillium roqueforti IBT18687, Penicillium expansum IDM/FS2, Endomyces fibuliger IBT605 and IDM3812, Aspergillus niger FTDC3227 and IDM1, Aspergillus flavus FTDC3226, Monilia sitophila IDM/FS5, and Fusarium graminearum IDM623. The nonconcentrated culture filtrate of L. plantarum 21B grown in whole wheat flour hydrolysate had similar inhibitory activity. The activity was fungicidal. Calcium propionate at 3 mg ml(-1) was not effective under the same assay conditions, while sodium benzoate caused inhibition similar to L. plantarum 21B. After extraction with ethyl acetate, preparative silica gel thin-layer chromatography, and chromatographic and spectroscopic analyses, novel antifungal compounds such as phenyllactic and 4-hydroxy-phenyllactic acids were identified in the culture filtrate of L. plantarum 21B. Phenyllactic acid was contained at the highest concentration in the bacterial culture filtrate and had the highest activity. It inhibited all the fungi tested at a concentration of 50 mg ml(-1) except for P. roqueforti IBT18687 and P. corylophilum IBT6978 (inhibitory concentration, 166 mg ml(-1)). L. plantarum 20B, which showed high antimold activity, was also selected. Preliminary studies showed that phenyllactic and 4-hydroxy-phenyllactic acids were also contained in the bacterial culture filtrate of strain 20B. Growth of A. niger FTDC3227 occurred after 2 days in breads started with Saccharomyces cerevisiae 141 alone or with S. cerevisiae and Lactobacillus brevis 1D, an unselected but acidifying lactic acid bacterium, while the onset of fungal growth was delayed for 7 days in bread started with S. cerevisiae and selected L. plantarum 21B.  相似文献   

16.
This is the first report to investigate the antifungal susceptibility of 21 clinical isolates of seven Candida species to epigallocatechin 3-O-gallate (EGCg) and to compare with six antifungal agents, amphotericin B (AMPH), fluconazole (FLCZ), flucytosin (5FC), itraconazole (ITCZ), micafungin (MCFG), and miconazole (MCZ), using a method following the National Committee for Clinical Laboratory Standards (NCCLS) M27-A guidelines. Among the tested species, Candida glabrata exhibited the highest susceptibility to EGCg (MIC50, 0.5-1 microg/ml and MIC90, 1-2 microg/ml) compared favorably with FLCZ, although they were slightly less susceptible than to AMPH, 5FC, MCFG, ITCZ, and MCZ. Candida guilliemondii and Candida parapsilosis (MIC50, 1-4 microg/ml and MIC90, 2-16 microg/ml) were also susceptible to EGCg, although they appear to be slightly less susceptible to EGCg than C. glabrata and the other antifungal agents tested. Moreover, the susceptibility of Candida krusei strains (MIC50, 2 microg/ml and MIC90, 4-8 microg/ml) to EGCg was approximately 2- to 8-fold higher than those of 5FC and FLCZ. Our data indicate that EGCg can inhibit clinically pathogenic Candida species, although the concentrations of EGCg for antifungal susceptibility were slightly higher than those of tested antifungal agents on the whole. Based on these results, we suggest that EGCg may be effectively used as a possible agent or adjuvant for antifungal therapy in Candidiasis.  相似文献   

17.
4-thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC=4.8-12.7 mM). It has been demonstrated that alpha-methoxylation efficiently blocks beta-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by alpha-substitution. The unprecedented (+/-)-2-hydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (+/-)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (+/-)-2-methoxy-4-thiatetradecanoic acid displayed significantly higher antifungal activities against C. albicans (ATCC 60193), C. neoformans (ATCC 66031), and A. niger (ATCC 16404) (MIC=0.8-1.2 mM), when compared with 4-thiatetradecanoic acid. In the case of C. neoformans the (+/-)-2-hydroxy-4-thiatetradecanoic acid was more fungitoxic (MIC=0.17 mM) than the alpha-methoxylated analog, but not as effective against A. niger (MIC=5.5 mM). The enhanced fungitoxicity of the (+/-)-2-methoxy-4-thiatetradecanoic acid, as compared to decylthiopropionic acid, might be the result of a longer half-life in the cells due to a blocked beta-oxidation pathway which results in more time to exert its toxic effects. Thus, these novel fatty acids may have applications as probes to study fatty acid metabolic routes in human cells.  相似文献   

18.
Rs-AFPs are antifungal proteins, isolated from radish (Raphanus sativus) seed or leaves, which consist of 50 or 51 amino acids and belong to the plant defensin family of proteins. Four highly homologous Rs-AFPs have been isolated (Rs-AFP1-4). The structure of Rs-AFP1 consists of three beta-strands and an alpha-helix, and is stabilized by four cystine bridges. Small peptides deduced from the native sequence, still having biological activity, are not only important tools to study structure-function relationships, but may also constitute a commercially interesting target. In an earlier study, we showed that the antifungal activity of Rs-AFP2 is concentrated mainly in the beta2-beta3 loop. In this study, we synthesized linear 19-mer peptides, spanning the entire beta2-beta3 loop, that were found to be almost as potent as Rs-AFP2. Cysteines, highly conserved in the native protein, are essential for maintaining the secondary structure of the protein. Surprisingly, in the 19-mer loop peptides, cysteines can be replaced by alpha-aminobutyric acid, which even improves the antifungal potency of the peptides. Analogous cyclic 19-mer peptides, forced to adopt a hairpin structure by the introduction of one or two non-native disulfide bridges, were also found to possess high antifungal activity. The synthetic 19-mer peptides, like Rs-AFP2 itself, cause increased Ca2+ influx in pregerminated fungal hyphae.  相似文献   

19.
This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease.  相似文献   

20.
A lipase-producing strain of Pseudomonas cepacia isolated from a soil sample was found to produce five compounds when oleic acid was added to the culture medium as lipase inducer. The five compounds were isolated by solvent extraction, silicagel column chromatography and preparative HPLC, and their structural elucidation was performed by mass spectrometry, and infrared and nuclear magnetic resonance spectroscopies. The products were identified as dec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (product 1 ), undec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (product 2 ), dodec-3-ene-I,3,4-tricarboxylic acid 3,4-anhydride (product 3 ), dodec-3,8-diene-1,3,4-tricarboxylic acid 3,4-anhydride (product 4 ) and dodec-3,6-diene-I,3,4-tricarboxylic acid 3,4-anhydride (product 5 ). Accumulation of these compounds in the culture medium started after oleic acid consumption and followed a pattern similar to that found for cell growth and for lipase production. The five compounds were radioactively labeled when [U- 14 C]oleic acid was supplied to the culture medium, thus showing that they were produced by transformation of the acid. When isolated from cultures containing [1,2- 13 C]acetic acid and oleic acid as the sole sources of carbon, the compounds showed to contain the 13 C isotope only in the first five atoms of carbon of the molecule. Several long chain fatty acids also acted as precursors of these compounds, with maximal yields for chain lengths between 11 and 18 atoms of carbon. None of the five compounds acted as lipase inducer when added to the culture medium instead of oleic acid. The compounds showed moderate antibacterial and antifungal activities when tested in solid media bioassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号