首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract : A standardized compression injury of rat spinal cord brought about a time-dependent biphasic production of thromboxane A2 (detected as thromboxane B2) and prostaglandin I2 (detected as 6-ketoprostaglandin F. Thromboxane B2 was predominant during the first 1 h, whereas the 6-ketoprostaglandin F level exceeded that of thromboxane B2 at 8 h postinjury. As examined by inhibitor experiments and northern blotting, cyclooxygenase-1 was responsible for the first phase, and cyclooxygenase-2 was involved in the second phase. On compression injury the levels of interleukin-1α and -1β detected as mRNA and protein increased and peaked at 2-4 h. Injection of exogenous interleukin-1 α into the spinal cord resulted in an increase of cyclooxygenase-2 mRNA content and a predominant production of 6-ketoprostaglandin F resembling the second phase of eicosanoid production. Concomitantly, extravascular migration of polymorphonuclear leukocytes was enhanced after the interleukin-1α injection. These cells together with vascular endothelial cells and glial cells were stained positively with an anti-cyclooxygenase-2 antibody. The results suggest that the immediate eicosanoid synthesis after spinal cord injury was due to the constitutive cyclooxygenase-1 and the delayed synthesis of eicosanoids was attributable to the induction of cyclooxygenase-2 mediated by interleukin-1 α.  相似文献   

2.
Abstract: We have characterized a high-affinity [35S]-glutathione ([35S]GSH) binding site in mouse and human spinal cord. [35S]GSH binding sites in mouse and human spinal cord were observed largely within the gray matter in both the dorsal and ventral horns of spinal cord at cervical, thoracic, and lumbosacral segments. High-affinity [35S]GSH binding was saturable, showing a B max of 72 fmol/mg of protein and a K D of 3.0 n M for mouse spinal cord and a B max of 52 fmol/mg of protein and a K D of 1.6 n M for human spinal cord. [35S]GSH binding was displaceable by GSH, l -cysteine, and S -hexyl-GSH, but not by glutamate, glycine, or NMDA. These [35S]GSH binding sites exhibited kinetic and saturation characteristics similar to GSH binding sites in rat brain astrocytes. To determine whether [35S]GSH binding sites could be regulated by protein kinase C, we exposed human spinal cord sections to phorbol 12,13-diacetate for 1 h before ligand binding. Phorbol ester treatment increased [35S]GSH binding by ∼60%, an effect that could be blocked by exposure of spinal cord sections to 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a general protein kinase inhibitor. [35S]GSH binding sites in the spinal cord of both species exhibited many of the characteristics of a receptor including saturable binding, high affinity, ligand specificity, and modulation by kinase activity. These data suggest that GSH is a neurotransmitter in the CNS.  相似文献   

3.
Abstract: To elucidate mechanisms regulating the production of platelet-derived growth factor (PDGF) in the CNS, we analyzed the influence of a panel of cytokines on PDGF mRNA and protein levels in astrocyte-enriched cultures from the human embryonic brain and spinal cord. Using a specific ELISA, PDGF AB protein was detected in serum-free astrocyte supernatants and its levels were significantly increased after treatment of the cultures with transforming growth factor-β1 (TGF-β1) or tumor necrosis factor-α (TNF-α); the largest increase was detected after combined treatment with the two cytokines. Interleukin-1β (IL-1β) by itself had little or no effect but synergized with TGF-β1 in enhancing PDGF AB production. Supernatants from human astrocyte cultures stimulated the proliferation of rat oligodendrocyte progenitors, and most of the mitogenic activity could be accounted for by PDGF. By northern blot analysis, both PDGF A- and PDGF B-chain mRNAs were detected in untreated astrocytes. PDGF B-chain mRNA levels were increased by TGF-β1, TNF-α, TNF-α/TGF-β1, or IL-1β/TGF-β1, whereas PDGF A-chain mRNA levels were not consistently affected by cytokine treatments. These in vitro data indicate that TGF-β1, TNF-α, and IL-1β are able to stimulate astrocyte PDGF production. This cytokine network could play a role in CNS development and repair after injury or inflammation.  相似文献   

4.
Abstract: Spinal cord tissue pH was measured in cats at normocapnia, hypocapnia, hypercapnia and death from anoxia using a pH-sensitive fluorescent indicator (umbelliferone) with both molecular and ionic fluorophors. A ratio analysis of the indicator's calibrated 450 nm fluorescent tissue clearance curves from 340 and 370 nm excitation permitted direct in vivo tissue pH determinations. Fifteen animals were divided into three equal groups according to different arterial carbon dioxide tensions (Pa co2):five animals at Pa co2 20, five animals Pa co2 40 and five animals Pa co2 60 torr. Spinal cord tissue pH varied linearly with arterial pH, but within narrower limits. These values (arterial versus cord pH) were: 7.46 versus 7.15; 7.21, 7.09; and 7.04, 7.00. At death from hypoxemia the arterial pH fell to 6.99 and spinal cord to 6.67. The clearance curves of umbelliferone in spinal cord varied according to Pa co2 and appeared to reflect spinal cord blood flow.  相似文献   

5.
Female Trichogaster trichopterus were exposed to aquarium water in which males had built nests. Gonadotropin cells in the pituitary gland, and exovitellogenesis and steroidogenesis in the ovary were studied. In females in which the percentage of oocytes in vitellogenesis (%V) was low initially, it rose significantly in comparison with an unexposed control group. In females in which the %V was higher initially, it increased further, and in addition a significant percentage of oocytes reached maturation. Thin layer chromatography, using the precursors 3H-pregnenolone and 14progesterone, revealed high yields of the steroids 17β-estradiol (E2), 17α,20β-dihydroxy-4-pregnen-3-one (17,20-P), 5β-pregane,3α,17α,20β-triol (5β-P-triol) and 11-ketotestosterone (11KT) in both experimental groups. Significant differences were found in E2, 17,20-P and 5β-P-triol between the test and control groups. The immunoresponse of GtH-producing cells in the pituitary of the females maintained in nest water was lower than in the control group, suggesting that the GtH was secreted from the cells, which would explain the vitellogenic and steroidogenic changes found in the ovary.  相似文献   

6.
Zolpidem is a positive allosteric modulator of GABAA receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABAA receptors containing the α1 subunit, it has a lower affinity to GABAA receptors containing α2, α3, or α5 subunits and has a very weak efficacy at receptors containing the α5 subunit. Here, we show that replacing histidine in position 105 in the α5 subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the α5 subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to α5H105 in α1, α2, and α3 are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines α1H101, α2H101, and α3H126 by arginine, as naturally present in α4 and α6, leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in α5 containing receptors also for the action of zolpidem.  相似文献   

7.
Abstract: We have carried out assays for glutamic acid decarboxylase (GAD) in homogenates of brain and spinal cord from larval and adult sea lamprey ( Petromyzon marinus ). The enzyme had similar characteristics in both stages. Optimal pH was 6.8; optimal temperature was 27–30° C; K m at 27°C was 5 mM. GAD activity was distributed uniformly along the length of the spinal cord. Specific activities for the larval cord and brain were 26 and 63 nm CO2/mg protein/h. respectively. The specific activities for the adult cord and brain were 29 and 236 nm CO2/mg protein/h, respectively. Thus, the activity of cord homogenates did not change significantly between larval and adult stages, but that of the brain increased about fourfold.  相似文献   

8.
Abstract: The presynaptic regulation of amino acid release from nerve terminals was investigated using synaptosomes prepared from the rat spinal cord. The basal releases of endogenous glutamate (Glu), aspartate (Asp), and γ-amino-butyric acid (GABA) were 34.6, 21.5, and 10.0 pmol/min/mg of protein, respectively. Exposure to a depolarizing concentration of KCl (30 m M ) evoked 2.7-, 1.5-, and 2.9-fold increases in Glu, Asp, and GABA release, respectively. Clonidine reduced the K+-evoked overflow of Glu to 56% of the control overflow with a potency (IC50) of 17 n M , but it did not affect K+-evoked overflow of Asp, GABA, and their basal releases. Similarly, noradrenaline inhibited the K+-evoked overflow of Glu, although phenylephrine and isoproterenol showed no effect. The inhibitory effect of clonidine was counteracted by α2-adrenoceptor antagonists, rauwolscine, yohimbine, and idazoxan, regardless of the imidazoline structures. Because Glu is considered a neurotransmitter of primary afferents that transmit both nociceptive and nonnociceptive stimuli in the spinal cord, these data suggest that part of Glu release may be regulated by the noradrenergic system through α2 adrenoceptors localized on the primary afferent terminals.  相似文献   

9.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

10.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

11.
Abstract: Developmental changes in the pharmacological properties of the GABAA receptor have been suggested to result from changes in the subunit composition of the receptor complex. The nicotinic acetylcholine receptor is structurally related to the GABAA receptor and undergoes a developmental subunit switch at the neuromuscular synapse. To examine the mechanistic similarities between these systems we sought to find whether the changes in GABAA receptor subunits are controlled by changes in messenger RNA levels, as they are for the nicotinic acetylcholine receptor. We found a 10-fold increase in the level of α1-subunit mRNA, and a small increase in levels of GABAA/benzodiazepine receptors from day 1 to day 24 of rat cerebellar development. We also found that the levels of α1-subunit mRNA were higher than the levels of mRNA encoding other α subunits at all developmental time points. The low levels of messenger RNA for α2, α3, and α5 subunits are inconsistent with the high levels of type II benzodiazepine binding in the rat cerebellum at birth because these α subunits have been shown to form GABAA receptors with type II benzodiazepine binding. These findings are inconsistent with simple models that would explain the developmental differences in GABAA receptor pharmacology simply as a result of changes in α-subunit gene expression.  相似文献   

12.
α -Mannosidase (EC 3.2.1.24) from rice dry seeds was purified to homogeneity. Optimum pH and Km for pNP- α -Man hydrolysis were pH 4.3–4.5 and 1.04 m M , respectively. The enzyme digested mannobioses such as Man α -1,2Man, Man α -1,6Man, Man α -1,3Man but Man α -1,4Man. Zn2+ ion was required for the activity, whereas EDTA and swainsonine inhibited the activity by 80 and 96%, respectively. The rice storage protein, glutelin was prepared and its basic subunits were shown to have high mannose-type sugar chains by two-dimensional mapping using NH2-P and C18 silica columns. They were Man9GlcNAc2, Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2 and Man5GlcNAc2. All these oligosaccharides were digested by the purified α -mannosidase, and Man-GlcNAc2 and mannose were formed. Glycopeptides, having these high mannose-type sugar chains, could also be digested by the α -mannosidase. Subunits were prepared from glutelin basic subunit and the richest subunit among them, subunit 2 (isoform 2), was digested by the α -mannosidase. Isoform 2 was digested by V8 protease only partially and slowly. However, isoform 2, pre-treated with the α -mannosidase, was rapidly and completely digested by V8 protease.  相似文献   

13.
14.
Behavioural and electro-olfactogram (EOG) responses to synthetic F-prostaglandins (PGFs) were recorded in the three salmonids: brown trout Salmo trutta , lake whitefish Coregonus clupeaformis and rainbow trout Oncorhynchus mykiss . Exposure to 10−8 M PGF and 13, 14-dihydro-PGF increased swimming activity in individually exposed brown trout in a flow-through tank. Digging and nest probing behaviours were further observed in brown trout females exposed to PGF. Lake whitefish exposed to 10−8 M PGF and 15-keto-PGF also increased their locomotion. In rainbow trout, the absence of behavioural responses to PGFs correlates with a lack of olfactory sensitivity to these chemicals. PGFs triggered behavioural responses distinct from the feeding stimulant in brown trout. EOG measurements demonstrated that brown trout were most sensitive to PGF, with a threshold concentration of 10−11 M. Lake whitefish were most sensitive to both 15-keto-PGF and 13, 14-dihydro-PGF. Cross-adaptation and binary mixture experiments suggest that only one olfactory receptive mechanism is involved in PGFs detection. The behavioural and olfactory responses observed with exposure to PGF and its metabolites suggest these compounds function as reproductive pheromones in brown trout and lake whitefish.  相似文献   

15.
ABSTRACT. Macrophage-conditioned medium (MøCM) prepared from mouse peritoneal macrophages activated in vivo with bacillus Calmette-Guérin (BCG) or Propionibacterium acnes and triggered with lipopolysaccharide in vitro contained tumoricidal and amoebicidal activity. The murine fibroblast cell line L929 was used as the indicator of tumoricidal activity and Naegleria fowleri amoeba was used to detect amoebicidal activity in MøCM. The protease inhibitor, soybean trypsin inhibitor, decreased tumoricidal activity but had little effect on amoebicidal activity in MøCM. Anti-TNF α antiserum inhibited tumoricidal activity in MøCM. The antiserum reduced amoebicidal activity in BCG-activated MøCM but had no effect on amoebicidal activity in P. acnes -activated MøCM. Recombinant TNF α , rIL-1 α , or rIL-1 β independently did not affect cytolysis of amoebae. Also, rTNF α had no effect on the growth of amoebae. Preparative flat-bed electrofocusing of BCG-activated MøCM yielded fractions that exhibited different amoebicidal and tumoricidal activity profiles. Three domains of activity were analyzed (acidic, neutral, and basic). Anti-TNF α antiserum eliminated tumoricidal activity, but not amoebicidal activity, in fractions from the acidic domain. A combination of anti-TNF α and anti-IL-1 α antisera failed to eliminate amoebicidal activity in fractions from the basic domain. These results indicate that different factors are responsible for macrophage amoebicidal and tumoricidal activity. The amoebicidal factors in MøCM affected cytolysis of several species of amoebae.  相似文献   

16.
Abstract: Ethanol dependence and tolerance involve perturbation of GABAergic neurotransmission. Previous studies have demonstrated that ethanol treatment regulates the function and expression of GABAA receptors throughout the CNS. Conceivably, changes in receptor function may be associated with alterations of subunit composition. In the present study, a comprehensive (1–12 weeks) ethanol treatment paradigm was used to evaluate changes in GABAA receptor subunit expression in several brain regions including the cerebellum, cerebral cortex, ventral tegmental area (VTA) (a region implicated in drug reward/dependence), and the hippocampus (a region involved in memory/cognition). Expression of α1 and α5 subunits was regulated by ethanol in a region-specific and time-dependent manner. Following 2–4 weeks of administration, cortical and cerebellar α1 and α5 subunit immunoreactivity was reduced. In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 weeks but not 1–4 weeks of treatment. Hippocampal α1 subunit immunoreactivity and mRNA content were also significantly reduced after 12 but not after 4 weeks of treatment. In contrast, α5 mRNA content was increased in this brain region. These data indicate that chronic ethanol administration alters GABAA receptor subunit expression in the VTA and hippocampus, effects that may play a role in the abuse potential and detrimental cognitive effects of alcohol.  相似文献   

17.
Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type calcium channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel (VGCC) β1b or β2a subunits, but not with the β3 or β4 subunits ( Grueter et al. 2008 ). CaMKII-dependent facilitation of CaV1.2 LTCCs requires Thr498 phosphorylation in the β2a subunit ( Grueter et al. 2006 ), but the relationship of this modulation to CaMKII interactions with LTCC subunits is unknown. Here we show that CaMKII co-immunoprecipitates with forebrain LTCCs that contain CaV1.2α1 and β1 or β2 subunits, but is not detected in LTCC complexes containing β4 subunits. CaMKIIα can be specifically tethered to the I/II linker of CaV1.2 α1 subunits in vitro by the β1b or β2a subunits. Efficient targeting of CaMKIIα to the full-length CaV1.2α1 subunit in transfected HEK293 cells requires CaMKII binding to the β2a subunit. Moreover, disruption of CaMKII binding substantially reduced phosphorylation of β2a at Thr498 within the LTCC complex, without altering overall phosphorylation of CaV1.2α1 and β subunits. These findings demonstrate a biochemical mechanism underlying LTCC facilitation by CaMKII.  相似文献   

18.
19.
Abstract: The interactions of the atypical benzodiazepine 4'-chlorodiazepam (Ro 5-4864) with functionally expressed human GABAA receptor cDNAs were determined. Cotransfection of human α2, β1, and γ2 subunits was capable of reconstituting a 4'-chlorodiazepam recognition site as revealed by a dose-dependent potentiation of t -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the GABA-activated chloride channel. This site is found on GABAA receptor complexes containing sites for GABA agonist-like benzodiazepines and neuroactive steroids. The importance of the α subunit was further demonstrated as substitution of either α1 or α3 for the α2 subunit did not reconstitute a 4'-chlorodiazepam recognition site that was capable of modulating [35S]TBPS binding under the same experimental conditions. The 4'-chlorodiazepam modulatory site was shown to be distinct from the benzodiazepine site, but the phenylquinolines PK 8165 and PK 9084 produced effects similar to 4'-chlorodiazepam, consistent with the previous analysis of the 4'-chlorodiazepam site in brain homogenates. Further analysis of the subunit requirements revealed that coexpression of α2 and β1 alone reconstituted a 4'-chlorodiazepam recognition site. It is interesting, however, that the 4'-chlorodiazepam site was found to inhibit [35S]TBPS binding to the GABA-activated chloride channel. Thus, the 4'-chlorodiazepam site may be reconstituted with only the α and β polypeptides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号