首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extravagant secondary sexual characters are assumed to have arisen and be maintained by sexual selection. While traits like horns, antlers and spurs can be ascribed to intrasexual competition, other traits such as extravagant feather ornaments, displays and pheromones have to be ascribed to mate choice. A number of studies have tested whether females exert selection on the size of male ornaments, but only some of these have recorded female preferences for the most extravagantly ornamented males. Here I demonstrate that female choice can be directly predicted from the relationship between the degree of fluctuating asymmetry and the size of a secondary sexual character. Fluctuating asymmetry is an epigenetic measure of the ability of individuals to cope with stress, and it occurs when an individual is unable to undergo identical development of an otherwise bilaterally symmetric trait on both sides of its body. There is a negative relationship between the degree of fluctuating asymmetry and the absolute size of an ornament in those bird species with a female preference for the largest male sex trait, while there is a flat or U-shaped relationship among species without a female preference. These results suggest that females prefer exaggerated secondary sexual characters if they reliably demonstrate the ability of males to cope with genetic and environmental stress. Some species may demonstrate a flat or U-shaped relationship between the degree of fluctuating asymmetry and the absolute size of an ornament because (i) the genetic variance in viability signalled by the secondary sex trait has been depleted; (ii) the secondary sex trait is not particularly costly and therefore does not demonstrate condition dependence; or because (iii) the sex traits can be considered arbitrary traits rather than characters reflecting good genes.  相似文献   

2.
Fluctuating asymmetry (FA) is widely used to quantify developmental instability (DI) in ecological and evolutionary studies. It has long been recognized that FA may not exclusively originate from DI for sessile organisms such as plants, because phenotypic plasticity in response to heterogeneities in the environment might also produce FA. This study provides the first empirical evidence for this hypothesis. We reasoned that solar irradiance, which is greater on the southern side than on the northern side of plants growing in the temperate zone of the Northern Hemisphere, would cause systematic morphological differences and asymmetry associated with the orientation of plant parts. We used geometric morphometrics to characterize the size and shape of flower parts in Iris pumila grown in a common garden. The size of floral organs was not significantly affected by orientation. Shape and particularly its asymmetric component differed significantly according to orientation for three different floral parts. Orientation accounted for 10.4% of the total shape asymmetry within flowers in the falls, for 11.4% in the standards and for 2.2% in the style branches. This indicates that phenotypic plasticity in response to a directed environmental factor, most likely solar irradiance, contributes to FA of flowers under natural conditions. That FA partly results from phenotypic plasticity and not just from DI needs to be considered by studies of FA in plants and other sessile organisms.  相似文献   

3.
4.
Plants of the partially self-incompatible perennial herb Brassica cretica, derived from controlled cross- and self-pollinations within each of seven populations, were raised under uniform conditions and scored for two measures of developmental stability, flower asymmetry (quantified as the difference in length and width between opposite petals) and cotyledon asymmetry (quantified as the difference in the area of the two lobes of each cotyledon). The primary goals were to assess the level of heritable variation in asymmetry, the effect of selfing on mean asymmetry, and the relationship between asymmetry and components of fitness. A paternal half-sibling analysis of data on flower asymmetry failed to detect significant levels of genetic variation at the within-population level, whereas the between-population component reached significance for all measures of asymmetry. Analysis of family-structured data from another crossing experiment revealed significant between-population variation in cotyledon asymmetry and a tendency for inbred progeny to produce more asymmetric cotyledons than outbred progeny. However, the response to inbreeding was weak and differed in magnitude between populations. Judging from the ranking of populations, we found no support for the hypothesis that the mean expression of developmental stability is controlled by genomewide characteristics such as the level of inbreeding. Correlations between measures of asymmetry and fitness were too low to be declared statistically or biologically significant. The present study provides little evidence that flower and cotyledon asymmetry serve as more appropriate predictors of genetic health than conventional (direct) measures of fitness.  相似文献   

5.
Nonlinear growth dynamics and the origin of fluctuating asymmetry   总被引:2,自引:0,他引:2  
  相似文献   

6.
Phenotypic variation in two populations of the White Sea herring Clupea pallasi marisalbi (Berg) (spring spawners and summer spawners), based on 21 meristic and 21 morphometric bilateral characters, has been studied. Total phenotypic variance was partitioned into a within-individual or stochastic component (fluctuating asymmetry) and an among-individual or factorial component, reflecting heterogeneity among individuals and resulting from the diversity of genotypes and environments. Both standardized stochastic and factorial components show clear negative correlations with means across characters. Negative correlation of the factorial components with means is in contradiction to the commonly accepted explanation of negative means-standardized variances association. Slopes of regression of standardized stochastic variances on means in meristic characters was significantly higher in summer spawners than in spring spawners, and results in discordance of stochastic variance across characters: it is higher in spring spawners for low and average variability characters and does not differ for both populations for high variability characters. The populations do not show notable differences in variation of morphometric characters. Consideration of other available data on these populations, such as spawning behaviour and salinity resistance of larvae, suggests that the lower slope of regression of stochastic variances on means is associated with the reduced viability of spring spawners  相似文献   

7.
In many studies, fluctuating asymmetry (FA) has been used as a measure of individual differences in developmental imprecision. A model of how variation in developmental imprecision is associated with variation in asymmetry is described and applied to important issues about FA. If individual differences in developmental imprecision exist, asymmetry due to developmental error should be leptokurtically distributed. Moreover, the greater the magnitude of individual differences, the greater the leptokurtosis. Asymmetry purportedly due to developmental error in a variety of species is indeed leptokurtically distributed. The level of leptokurtosis suggests that the CV in individual differences in underlying developmental imprecision is generally 20–25, consistent with it being a fitness trait. In addition, data suggest that: (1) the individual differences that underlie the developmental imprecision of different traits are largely shared across traits and not trait-specific; (2) the heritability of these individual differences may average between 35 and 55%, despite small heritabilities of individual trait FAs; and (3) correlations between FA and fitness traits or components suggest high correlations between underlying variation in developmental precision and fitness in many species. Theoretical implications are discussed.  相似文献   

8.
We tested whether directional selection on an index-based wing character in Drosophila melanogaster affected developmental stability and patterns of directional asymmetry. We selected for both an increase (up selection) and a decrease (down selection) of the index value on the left wing and compared patterns of fluctuating and directional asymmetry in the selection index and other wing traits across selection lines. Changes in fluctuating asymmetry across selection lines were predominantly small, but we observed a tendency for fluctuating asymmetry to decrease in the up-selected lines in both replicates. Because changes in fluctuating asymmetry depended on the direction of selection, and were not related to changes in trait size, these results fail to support existing hypotheses linking directional selection and developmental stability. Selection also produced a pattern of directional asymmetry that was similar in all selected lines whatever the direction of selection. This result may be interpreted as a release of genetic variance in directional asymmetry under selection.  相似文献   

9.
The idea that symmetry in facial traits is associated with attractiveness because it reliably indicates good physiological health, particularly to potential sexual partners, has generated an extensive literature on the evolution of human mate choice. However, large-scale tests of this hypothesis using direct or longitudinal assessments of physiological health are lacking. Here, we investigate relationships between facial fluctuating asymmetry (FA) and detailed individual health histories in a sample (n = 4732) derived from a large longitudinal study (Avon Longitudinal Study of Parents and Children) in South West England. Facial FA was assessed using geometric morphometric analysis of facial landmark configurations derived from three-dimensional facial scans taken at 15 years of age. Facial FA was not associated with longitudinal measures of childhood health. However, there was a very small negative association between facial FA and IQ that remained significant after correcting for a positive allometric relationship between FA and face size. Overall, this study does not support the idea that facial symmetry acts as a reliable cue to physiological health. Consequently, if preferences for facial symmetry do represent an evolved adaptation, then they probably function not to provide marginal fitness benefits by choosing between relatively healthy individuals on the basis of small differences in FA, but rather evolved to motivate avoidance of markers of substantial developmental disturbance and significant pathology.  相似文献   

10.
Habitat fragmentation has the potential to influence the development and thus the phenotype of organisms. The asymmetry of bilateral traits may be indicative of the extent to which developmental stability is compromised by the stressful conditions underlying fragmentation. Using an assemblage- and population-level approach, we explored asymmetry differences in tarsus and outermost tail feathers of birds inhabiting fragmented landscapes in the tropical Andes of Colombia. More than 2500 individuals of 185 species were mist-netted at nine forest sites representing continuous forest (> 1000 ha), medium- (70–110 ha), and small-sized (8–20 ha) fragments. Feathers showed true fluctuating asymmetry (FA), whereas tarsus presented a mixture of FA and directional asymmetry. Overall, asymmetry was lowest in continuous forest, and highest in small and medium fragments. These patterns remained unchanged when directionality and differences in species composition, abundance, and foraging tactics were considered. The population-level analyses showed a general trend of increased asymmetry variation in fragments, yet the responses were not always in the same direction. Increased asymmetry may represent an outcome of processes that contribute to the persistence of species in changing environments, and to the generation of phenotypic innovation, which suggests individual adjustments of development to deal with stress. This calls into question the deliberated application of FA as a biomonitoring tool for conservation.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 119–133.  相似文献   

11.
Several earlier studies have indicated a negative relationship between fluctuating asymmetry (FA) and fitness. We tested this assumption by investigating the association between petal asymmetry and several fitness-related characters among natural and common garden populations of Lychnis viscaria. Neither seed set, germination percentage nor the growth rate of seedlings were related to the level of flower asymmetry either among natural populations or in common garden conditions. The only significant association found was a positive connection between petal asymmetry and seed mass measured from natural populations. Thus, in contrary to many earlier published reports, we did not find any evidence for a negative relationship between FA and fitness even if we controlled for measurement error, we had adequate sample size and we measured these characters in two environments. This suggests that FA is not consistently related to individual quality and fitness.  相似文献   

12.
Developmental stability is widely regarded as a condition‐dependent trait, but its relation to genotype and environment, and extent of developmental integration, remain contentious. In Telostylinus angusticollis, the dorsocentral bristles exhibit striking variation in developmental stability, manifested as fluctuating asymmetry (FA) in bristle position (‘positional FA’) and failure to develop some bristles (‘bristle loss’), in natural and laboratory populations. To determine whether this variation reflects condition, I tested for effects of genotype and environment (larval diet quality), and examined covariation with condition‐dependent traits. Positional FA was not affected by genotype or environment. However, positional FA covaried negatively with secondary sexual trait expression in males, and with sexual dimorphism in body shape, but covaried positively with body size in females. Bristle loss reflected both genotype and larval diet. Flies reared on poor‐quality diet exhibited a similar rate of bristle loss as wild flies. Both positional FA and bristle loss were greater in males. These results suggest that the relation between developmental stability and condition is complex and sex dependent.  相似文献   

13.
In bilateral characters, two kinds of asymmetries are common: fluctuating asymmetry (FA), or nondirectional variation between left and right sides, and directional asymmetry (DA), in which one side is consistently larger than the other. FA has been extensively used as a measure of developmental stability because of its presumed environmental basis whereas DA has not typically been recommended because it has been presumed to have at least some genetic basis. To test these two hypotheses, heritabilities were calculated via parent–offspring regression for both DA and FA in 10 triply measured mandible characters in random-bred mice. Midparent estimates of heritabilities of DA in the 10 characters were quite low (mean = 0.06), but significant for one character as well as the sum of the DA values over all characters (0.21). Midparent estimates of heritability of FA in the 10 characters also were low (mean = 0.03), but not significant for any individual character or the sum of the FA values over all characters. Heritabilities of developmental stability calculated from heritabilities and repeatabilities of FA in the mandible characters were higher in magnitude (mean of midparent estimates = 0.45), but all still were not statistically significant. It was concluded that both hypotheses were supported, but that genetic variation in DA was so small that the potential for DA as an indicator of developmental stability should be explored.  相似文献   

14.
Abstract

Although developmental instability (DI), measured as fluctuating asymmetry (FA), is expected to be positively related to environmental stress and negatively to habitat quality, the pattern found here was the reverse. Developmental instability of leaf traits (leaf width and vein distances within a leaf) was estimated (using two indices of FA: FA4 and σi 2) and compared between three populations of Plantago major L. (Plantaginaceae) from northern Serbia. Two of the populations are from chronically polluted areas (Karaburma & Zemun), while Crni Lug is from an unpolluted, natural area. Results obtained using both FA indices were the same; higher asymmetry levels in the unpolluted area than in the polluted sites, were found for both traits. Between the two polluted sites, FA values were significantly higher in Karaburma site for vein distances within a leaf. Concerning differences in FA4 values between samples, in two cases, results are similar to those found for σi 2 values, for vein distances within leaf. These are the first quantitative data on P. major indicating that (i) plants living in the stressful sites are more symmetrical and (ii) leaf FA for plant species with wide ecological distribution such as P. major should be considered as an ‘index of habitat quality.’  相似文献   

15.
16.
The relationship between developmental stability and morphological asymmetry is derived under the standard view that structures on each side of an individual develop independently and are normally distributed. I use developmental variance of sizes of parts, VD, as the converse of developmental stability, and assume that VD follows a gamma distribution. Repeatability of asymmetry, a measure of how informative asymmetry is about VD, is quite insensitive to the variance in VD, for example only reaching 20% when the coefficient of variation of VD is 100%. The coefficient of variation of asymmetry, CVFA, also increases very slowly with increasing population variation in VD. CVFA values from empirical data are sometimes over 100%, implying that developmental stability is sometimes more variable than any previously studied type of trait. This result suggests that alternatives to this model may be needed.  相似文献   

17.
Fluctuating asymmetry, the random deviation from perfect bilateral symmetry, has recently attracted considerable attention. Levels of asymmetry have been shown to correlate with measures of individual quality. We measured asymmetry in a variety of ornamental and non-ornamental traits in red junglefowl, Gallus gallus and examined the patterns of asymmetry among different traits within an individual. All ornamental traits had significantly higher levels of fluctuating asymmetry than did non-ornamental traits. However, inter-trait correlations of asymmetry were low for both ornamental and non-ornamental traits. We then correlated measures of asymmetry with several potential indicators of male quality, including comb size, body size, and body condition. We found little evidence that asymmetry in any measured trait reflected male quality. We measured asymmetry in ornamental traits at several stages of development and found no relationship between male condition and changes in asymmetry over time. Our results indicate that it is necessary to employ caution when choosing traits to be measured in studies of fluctuating asymmetry and that a relationship between asymmetry and individual quality cannot be assumed.  相似文献   

18.
The quantitative genetics of fluctuating asymmetry   总被引:1,自引:0,他引:1  
Fluctuating asymmetry (subtle departures from identical expression of a trait across an axis of symmetry) in many taxa is under stabilizing selection for reduced asymmetry. However, lack of reliable estimates of genetic parameters for asymmetry variation hampers our ability to predict the evolutionary outcome of this selection. Here we report on a study, based on analysis of variation within and between isofemale lines and of generation means (line-cross analysis), designed to dissect in detail the quantitative genetics of positional fluctuating asymmetry (PFA) in bristle number in natural populations of Drosophila falleni. PFA is defined as the difference between the two sides of the body in the placement or position of components of a meristic trait. Heritability (measured at 25 degrees C) of two related measures of PFA were 13% and 21%, both of which differed significantly from zero. In contrast, heritability estimates for fluctuating asymmetry in the total number of anterior (0.7%) and transverse (2.4%) sternopleural bristles were smaller, not significant, and in quantitative agreement with previously published estimates. Heritabilities for bristle number (trait size) were considerably greater than that for any asymmetry measure. The experimental design controlled for the potentially confounding effects of common familial environment, and repeated testing revealed that PFA differences between lines were genetically stable for up to 16 generations in the laboratory at 25 degrees C. We performed line cross analysis between strains at the extremes of the PFA distribution (highest and lowest values); parental strains, F1, F1r (reciprocal), F2, backcross, and backcross reciprocal generations were represented. The inheritance of PFA was described best by additive and dominance effects localized to the X-chromosomes, whereas autosomal dominance effects were also detected. Epistatic, maternal, and cytoplasmic effects were not detected. The inheritance of trait size was notably more complex and involved significant autosomal additive, dominance, and epistatic effects; maternal dominance effects; and additive and dominance effects localized to the X-chromosomes. The additive genetic correlation between PFA and its associated measure of trait size was negative (-0.049), but not statistically significant, indicating that the loci contributing additive genetic effects to these traits are probably different. It is suggested that PFA may be a sensitive measure of developmental instability because PFA taps the ability of an organism to integrate interconnected developmental pathways.  相似文献   

19.
20.
  1. Fluctuating asymmetry (FA) is hypothesized to be a useful predictor of population canalization, especially for organisms at risk from environmental change.
  2. Identification of traits that meet statistical criteria as FA measures remains a challenge.
  3. Here, a laboratory experiment subjected immature butterflies (Vanessa cardui) to diet and temperature conditions of varying stress levels. Variation in dietary macronutrient ratio (protein: carbohydrate) and rearing temperature (optimal: 25°C; elevated: 32°C) was introduced as stressors. Temperature and nutrition are key variables influencing ectotherm growth and fitness and so are likely to be important stressors that influence FA.
  4. Individuals subjected to stressful conditions were predicted to show elevated FA of three wing size traits, as well as increased mortality and decreased adult body size.
  5. Trait FA did not vary across treatments. Instead, treatment levels impacted viability: The combined incidence of pupal death and expression of significant wing malformations increased in treatment levels designated as stressful. Variation in adult dry mass also reflected predicted stress levels. Results suggest that individuals predicted to display increased FA either died or displayed gross developmental aberrations.
  6. This experiment illustrates important constraints on the investigation of FA, including selection of appropriate traits and identification of appropriate levels of stressors to avoid elevated mortality. The latter concern brings into question the utility of FA as an indicator of stress in vulnerable, natural populations, where stress levels cannot be controlled, and mortality and fitness effects are often not quantifiable.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号