首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among 150 temperature-sensitive Saccharomyces cerevisiae mutants which we have isolated, 15 are specifically affected in ribonucleic acid (RNA) synthesis. Four of these mutants exhibit particularly drastic changes and were chosen for a more detailed study. In these four mutants, RNA synthesis is immediately blocked after a shift at the nonpermissive temperature (37 C), protein synthesis decays at a rate compatible with messenger RNA half-life, and deoxyribonucleic acid synthesis increases by about 40%. All the mutations display a recessive phenotype. The segregation of the four allelic pairs ts-/ts+ in diploids is mendelian, and the four mutants belong to three complementation groups. The elution patterns (diethylaminoethyl-Sephadex) of the three RNA polymerases of the mutants grown at 37 C for 3.5 h show very low residual activities. The in vitro thermodenaturation confirms the in vivo results; the half-lives of the mutant activities at 45 C are 10 times smaller than those of the wild-type enzymes. Polyacrylamide gel electrophoresis shows that the synthesis of all species of RNA is thermosensitive. The existence of three distinct genes, which are each indispensable for the activity of the three RNA polymerases in vivo as well as in vitro, strongly favors the hypothesis of three common subunits in the three RNA polymerases.  相似文献   

2.
The newly identified yeast DNA polymerase III was compared to DNA polymerases I and II and the mitochondrial DNA polymerase. Inhibition by aphidicolin (I50) of DNA polymerases I, II, and III was 4, 6, and 0.6 micrograms/ml, respectively. The mitochondrial enzyme was insensitive to the drug. N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate strongly inhibited DNA polymerase I (I50 = 0.3 microM), whereas DNA polymerase III was less sensitive (I50 = 80 microM). Conditions that allowed proteolysis to proceed during the preparation of extracts converted DNA polymerase II from a sensitive form (I50 = 2.4 microM) to a resistant form (I50 = 2 mM). The mitochondrial DNA polymerase is insensitive (I50 greater than 5 mM). With most other inhibitors tested (N-ethylmaleimide, heparin, salt) only small differences were observed between the three nuclear DNA polymerases. Polyclonal antibodies to DNA polymerase III did not inhibit DNA polymerases I and II, nor were those polymerases recognized by Western blotting. Monoclonal antibodies to DNA polymerase I did not crossreact with DNA polymerases II and III. The results show that DNA polymerase III is distinct from DNA polymerase I and II.  相似文献   

3.
Bulk ribonucleic acid (RNA) was isolated from mechanically disrupted ascospores of Saccharomyces cerevisiae. After two passes over an oligo (dT10) cellulose column, the portion which bound, called poly(A)(+), was characterized. It is heterodisperse in size with a mean molecular weight of approximately 4 X 10(5), but contains some species as large as 7 X 10(5). The base composition is similar to vegetative poly(A)(+) RNA. The polyadenylate segment is also heterogenous in size, ranging from 90 to 20 bases in length, with a peak at approximately 60 nucleotides in length. Pulse-labeling of asci with [3H-methyl]methionine yields two "caps," 7-methyl guanosine-5'-triphosphoryl-5'-adenosine (or guanosine) identical to that found in vegetative poly(A)(+) RNA. The poly(A)(+) RNA in spores is found in polyribosomes which are, on the average, smaller than vegetative ones. Long-term labeling studies indicate that the fraction of poly(A)(+) RNA in spores is similar to that in vegetative cells.  相似文献   

4.
RNA polymerase II (RNAPII) is a complex multisubunit enzyme responsible for the synthesis of pre-mRNA in eucaryotes. The enzyme is made of two large subunits associated with at least eight smaller polypeptides, some of which are common to all three RNA polymerase species. We have initiated a genetic analysis of RNAPII by introducing mutations in RPO21, the gene encoding the largest subunit of RNAPII in Saccharomyces cerevisiae. We have used a yeast genomic library to isolate plasmids that can suppress a temperature-sensitive mutation in RPO21 (rpo21-4), with the goal of identifying gene products that interact with the largest subunit of RNAPII. We found that increased expression of wild-type RPO26, a single-copy, essential gene encoding a 155-amino-acid subunit common to RNAPI, RNAPII, and RNAPIII, suppressed the rpo21-4 temperature-sensitive mutation. Mutations were constructed in vitro that resulted in single amino acid changes in the carboxy-terminal portion of the RPO26 gene product. One temperature-sensitive mutation, as well as some mutations that did not by themselves generate a phenotype, were lethal in combination with rpo21-4. These results support the idea that the RPO26 and RPO21 gene products interact.  相似文献   

5.
We examined the kinetics of incorporation of [3H]adenine into polyadenylate-containing ribonucleic acid [poly(A)-containing RNA] in yeast. The total poly(A)-containing RNA from spheroplasts and intact cells and the polysomal poly(A)-containing RNA exhibited similar incorporation kinetics. At 30 C half-saturation of the pool of poly(A)-containing RNA with label occurred in approximately 22 min. Since precursor pools appeared to require 5 min to saturate with label, we conclude that at 30 C messenger RNA molecules in yeast decay with an average half-life of 17 min.  相似文献   

6.
7.
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction.  相似文献   

8.
9.
10.
11.
The pem locus, which is responsible for the stable maintenance of the low copy number plasmid R100, contains the pemK gene, whose product has been shown to be a growth inhibitor. Here, we attempted to isolate mutants which became tolerant to transient induction of the PemK protein. We obtained 20 mutants (here called pkt for PemK tolerance), of which 9 were temperature sensitive for growth. We analyzed the nine mutants genetically and found that they could be classified into three complementation groups, pktA, pktB and pktC, which corresponded to three genes, ileS, gltX and asnS, encoding isoleucyl-, glutamyl- and asparaginyl-tRNA synthetases, respectively. Since these aminoacyl-tRNA synthetase mutants did not produce the PemK protein upon induction at the restrictive temperature, these mutants could be isolated because they behaved as if they were tolerant to the PemK protein. The procedure is therefore useful for isolating temperature-sensitive mutants of aminoacyl-tRNA synthetases.  相似文献   

12.
The mesl- mutants of Saccharomyces cerevisiae cease division and accumulate in the G1 interval of the cell cycle when deprived of methionine or shifted from 23 to 36 degrees C in the presence of methionine. Synchronous cell cycle arrest results from a deficiency of charged methionyl-transfer ribonucleic acid (methionyl-tRNAMet) as shown by direct measurement of the in vivo pools of methionine, S-adenosylmethionine, and methionyl-tRNAMet. The deficiency of methionyl-tRNAMet in these cells is the consequence of a lesion in a single gene, mes1. mes1 appears to be the structural gene for the methionyl-tRNA synthetase because some revertants of this mutation exhibited a thermolabile methionyl-tRNA synthetase in vitro. A sufficient hypothesis to explain these and previous results is that the control of cell division by S. cerevisiae in response to nutrient limitation is mediated through aminoacyl-tRNA or subsequent steps in protein biosynthesis.  相似文献   

13.
14.
15.
16.
A Blank  L A Loeb 《Biochemistry》1991,30(32):8092-8096
DNA polymerase III of the yeast Saccharomyces cerevisiae has been reported to be encoded at the CDC2 locus based on two observations. First, the CDC2 gene has homology to known DNA polymerase genes [Boulet et al. (1989) EMBO J. 8, 1849-1854], and second, the mutants cdc2-1 and cdc2-2 yield little or no DNA polymerase III activity in vitro [Boulet et al. (1989); Sitney et al. (1989) Cell 56, 599-605]. We describe here the isolation of temperature-sensitive DNA polymerase III from cdc2-2 strains. Our results provide direct experimental confirmation of the previously inferred gene/enzyme relationship and verify the conclusion that DNA polymerase III is required to replicate the genome. We isolated DNA polymerase III from two cdc2-2 strains, one containing the wild-type allele for DNA polymerase I (CDC17) and the other a mutant DNA polymerase I allele (cdc17-1). Yields from cdc2-2 cells of both DNA polymerase III activity and an associated 3'-5'-exonuclease activity [exonuclease III; Bauer et al. (1988) J. Biol. Chem. 263, 917-924] were decreased relative to yields from CDC2 cells. DNA polymerase III activity from cdc2-2 strains is thermolabile, displaying at least a 4-fold reduction in half-life at 44 degrees C. The activity is also labile at 37 degrees C, a temperature which is restrictive for growth of cdc2-2 but not CDC2 strains. At 23 degrees C, a temperature which is permissive for growth of both cdc2-2 and CDC2 strains, the mutant and wild-type DNA polymerase III activities display equal stability. These observations provide a demonstrable biochemical basis for the thermosensitive phenotype of cdc2-2 cells.  相似文献   

17.
RNA Polymerases I and II have been purified to homogeneity from the slime mold Physarum polycephalum. When subjected to ultracentrifugation in separate sucrose gradients, or together, the two enzymes migrate with S values estimated at 14.5 S. Polyacrylamide gel electrophoresis under denaturing conditions reveals that the two enzymes have distinct but similar subunit structures. The probable subunit structure of polymerase II is as follows: 175,0001; 140,0001; 24,0002; 17,0001.  相似文献   

18.
19.
The ribonucleic acid (RNA) polymerases from the yeast phase of Histoplasma capsulatum are differentially sensitive to RNA isolated from the yeast and mycelial phases of this fungus and from Escherichia coli. Low-molecular-weight RNA from H. capsulatum was the most effective inhibitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号