首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
EBER 1, a small noncoding viral RNA abundantly expressed in all cells transformed by Epstein-Barr virus (EBV), has been shown to associate with the human ribosomal protein L22. Here we present in vitro binding studies using purified RNAs and recombinant proteins. Electrophoretic mobility-shift assays (EMSAs) show that recombinant L22 (rL22) and maltose-binding protein (MBP)-tagged L22 protein bind EBER 1 in vitro, both forming three specific protein-dependent mobility shifts. Use of a mixture of rL22 and MBP-L22 indicates that these three shifts contain one, two, or three L22 proteins per EBER 1 molecule. EMSAs performed with EBER 1 deletion constructs and EBER 1 stem-loops inserted into a nonbinding RNA, HSUR 3, identify stem-loops I, III, and IV as L22 binding sites. The existence of multiple L22 binding sites on EBER 1 inside cells is demonstrated by in vivo UV cross-linking. Our results are discussed with respect to the function of EBER 1 in EBV-infected human B cells.  相似文献   

3.
EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function.  相似文献   

4.
Epstein-Barr virus (EBV)–infected cells express two noncoding RNAs called EBV-encoded RNA (EBER) 1 and EBER2. Despite their high abundance in the nucleus (about 106 copies), the molecular function of these noncoding RNAs has remained elusive. Here, we report that the insertion into EBER1 of an RNA aptamer that binds the bacteriophage MS2 coat protein allows the isolation of EBER1 and associated protein partners. By combining MS2-mediated selection with stable isotope labeling of amino acids in cell culture (SILAC) and analysis by mass spectrometry, we identified AUF1 (AU-rich element binding factor 1)/hnRNP D (heterogeneous nuclear ribonucleoprotein D) as an interacting protein of EBER1. AUF1 exists as four isoforms generated by alternative splicing and is best known for its role in destabilizing mRNAs upon binding to AU-rich elements (AREs) in their 3′ untranslated region (UTR). Using UV crosslinking, we demonstrate that predominantly the p40 isoform of AUF1 interacts with EBER1 in vivo. Electrophoretic mobility shift assays show that EBER1 can compete for the binding of the AUF1 p40 isoform to ARE-containing RNA. Given the high abundance of EBER1 in EBV-positive cells, EBER1 may disturb the normal homeostasis between AUF1 and ARE-containing mRNAs or compete with other AUF1-interacting targets in cells latently infected by EBV.  相似文献   

5.
Y RNAs are small 'cytoplasmic' RNAs which are components of the Ro ribonucleoprotein (RNP) complex. The core of this complex, which is found in the cell nuclei of higher eukaryotes as well as the cytoplasm, is composed of a complex between the 60 kDa Ro protein and Y RNAs. Human cells contain four distinct Y RNAs (Y1, Y3, Y4 and Y5), while other eukaryotes contain a variable number of Y RNA homologues. When detected in a particular species, the Ro RNP has been present in every cell type within that particular organism. This characteristic, along with its high conservation among vertebrates, suggests an important function for Ro RNP in cellular metabolism; however, this function has not yet been definitively elucidated. In order to identify conserved features of Y RNA sequences and structures which may be directly involved in Ro RNP function, a phylogenetic comparative analysis of Y RNAs has been performed. Sequences of Y RNA homologues from five vertebrate species have been obtained and, together with previously published Y RNA sequences, used to predict Y RNA secondary structures. A novel RNA secondary structure comparison algorithm, the suboptimal RNA analysis program, has been developed and used in conjunction with available algorithms to find phylogenetically conserved secondary structure models for YI, Y3 and Y4 RNAs. Short, conserved sequences within the Y RNAs have been identified and are invariant among vertebrates, consistent with a direct role for Y RNAs in Ro function. A subset of these are located wholly or partially in looped regions in the Y3 and Y4 RNA predicted model structures, in accord with the possibility that these Y RNAs base pair with other cellular nucleic acids or are sites of interaction between the Ro RNP and other macromolecules.  相似文献   

6.
Novel Epstein-Barr Virus (EBV) strains with deletion of either EBER1 or EBER2 and corresponding revertant viruses were constructed and used to infect B lymphocytes to make lymphoblastoid cell lines (LCLs). The LCLs were used in microarray expression profiling to identify genes whose expression correlates with the presence of EBER1 or EBER2. Functions of regulated genes identified in the microarray analysis include membrane signaling, regulation of apoptosis, and the interferon/antiviral response. Although most emphasis has previously been given to EBER1 because it is more abundant than EBER2, the differences in cell gene expression were greater with EBER2 deletion. In this system, deletion of EBER1 or EBER2 had little effect on the EBV transformation frequency of primary B cells or the growth of the resulting LCLs. Using the recombinant viruses and novel EBER expression vectors, the nuclear redistribution of rpL22 protein by EBER1 in 293 cells was confirmed, but in LCLs almost all of the cells had a predominantly cytoplasmic expression of this ribosomal protein, which was not detectably changed by EBER1. The changes in LCL gene expression identified here will provide a basis for identifying the mechanisms of action of EBER RNAs.  相似文献   

7.
Much attention is currently being devoted to questions of protein and RNA tertiary structures and to the quaternary arrangement of the individual macromolecules in ribonucleoprotein (RNP) particles. In this article we describe two complementary strategies that allow the identification of RNA-protein contact sites in assembled, nonlabeled RNP particles after UV crosslinking. The first combines immunoprecipitation of UV-irradiated RNP particles under mildly denaturing conditions followed by primer-extension analysis of the crosslinked (and thus coprecipitated) RNA. The second involves the purification of crosslinked peptide-oligonucleotide from RNP particles and the subsequent analysis of the crosslinked peptide and RNA by Edman degradation and matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), respectively. Although the first approach provides a rapid method for the exact identification of RNA-protein contact sites in purified nonlabeled RNP particles, the latter adds valuable information about potential RNA binding domains within proteins and, thus, about the arrangement of these proteins within the quaternary structures of complex RNP assemblies. Recently, we applied both these strategies successfully to native purified spliceosomal RNP. These methods may be generally applicable to the analysis of RNP complexes, especially as they avoid labeling and reconstitution, both of which risk introducing artifacts.  相似文献   

8.
9.
10.
Anti-La sera from patients with autoimmune disorders precipitate a set of nuclear and cytoplasmic small RNA-protein complexes. Up to now, it has been thought that the La antigen is associated only with RNAs transcribed by RNA polymerase III, including precursors of tRNA and 5 S ribosomal RNA. Here we report that anti-La sera also react with ribonucleoprotein particles containing small nuclear RNA U1, which is transcribed by RNA polymerase II. Anti-La sera from 12 out of 12 patients tested were found to precipitate U1 RNA-protein complexes from HeLa cell nuclear extracts, under conditions where nonimmune sera do not. Ribonucleoprotein particles containing a second small nuclear RNA, U2, do not react appreciably with anti-La sera although they are present in HeLa cell nuclei at the same concentration as U1 RNA. Anti-La sera also react with U1 RNA-protein complexes in mouse and frog cells, but not in Drosophila or Chironomus, two organisms which lack the La antigen. Hybridization of cloned U1 DNA with anti-La-reactive RNA from HeLa cell nuclear extracts reveals mature U1 RNA, whereas anti-La-reactive cytoplasmic RNA contains a series of hybridizing bands that represent molecules 1-7 nucleotides longer than U1 and which may include precursors of nuclear U1 RNA (Madore, S. J., Wieben, E. D., and Pederson, T. (1984) J. Cell Biol., 188-192). Pulse-chase experiments suggest that the association of La antigenicity with these cytoplasmic U1 RNA molecules is transient. These results are discussed in relation to the presence of uridylate-rich sequences in the 3' termini of U1 RNA precursors and mature U1 RNA, which are similar to La antigen binding sites in several RNAs transcribed by RNA polymerase III.  相似文献   

11.
12.
Pseudouridylation is one of the most common forms of RNA modification. In eukaryotes and archaea, these modifications are carried out by H/ACA ribonucleoprotein (RNP) complexes, composed of an H/ACA guide RNA and four proteins, including the pseudouridine synthase, Cbf5. Remarkable progress has been made toward understanding the structure and function of H/ACA RNPs, both through mapping of RNA-protein and protein-protein interactions and the availability of X-ray structures, including that of the entire RNP. The pseudouridine synthase, Cbf5, is also the protein that specifically recognizes the guide RNAs. In this work, we have investigated the molecular basis of this key interaction. A mass spectrometric protein footprinting approach was employed to determine the amino acids of archaeal Cbf5 involved in interaction with the guide RNA. We found amino acid protections along the same RNA binding track observed in the crystal structure of the fully assembled complex, indicating that this interaction is established in the subcomplex. However, in addition, we observed a set of protections in the D2 subdomain of Cbf5 that appear to represent a unique, additional interaction of the guide RNA with the protein in the subcomplex. On the basis of these results, we present a model for the Cbf5-guide RNA complex that also incorporates other recent findings. Our analysis suggests that the assembly or function of H/ACA RNPs may be accompanied by dynamic changes in RNA-protein interactions.  相似文献   

13.
14.
15.
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.  相似文献   

16.
17.
The interactions between Ro and La proteins and hY RNAs have been analysed. The binding site for the 60 kDa Ro protein on hY RNAs is shown to be the terminal part of the base paired stem structure, which contains the most highly conserved sequence among hY RNAs. The bulged C-residue within this region plays an important role in the recognition by this protein. The same regions of hY RNAs are essential for the association of the 52 kDa Ro protein with the RNAs, strongly suggesting that the 60 kDa Ro protein is required for the 52 kDa Ro protein to bind, presumably via protein-protein interactions, to Ro RNPs. The binding site for the La protein on hY RNAs is shown to be the oligouridylate stretch near the 3'-end of the RNAs, which is also recognized when additional nucleotides flank this motif at the 3'-side. Additional sequence elements in hY3 and hY5, but not in hY1, are bound by the La protein as well. Deletion mutagenesis showed that the RNP motif, previously identified in many ribonucleoprotein (RNP) proteins and in some cases shown to be almost sufficient for the interaction with RNA, of both the 60 kDa Ro and the La protein are not sufficient for the interaction with hY RNAs. Substantial parts of these proteins flanking the RNP motif are needed as well. It is likely that they stabilize the correct conformation of the RNP motif for RNA binding.  相似文献   

18.
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.  相似文献   

19.

Background

Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication.

Methodology/Principal Findings

We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro.

Conclusions/Significance

We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号