首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A common cylindropuntia in the northwestern Sonoran Desert, Opuntia acanthocarpa, was investigated for the following hypotheses: its lower elevational limit is set by high temperatures, so its seedlings require nurse plants; its upper elevational limit is set by freezing; spine shading is the least at intermediate elevations; and changes in plant size and frequency with elevation reflect net CO2 uptake ability. For four elevations ranging from 230 m to 1,050 m, the mean height of O. acanthocarpa approximately doubled and its frequency increased 14-fold. Nurse plants were associated with only 4% of O. acanthocarpa less than 20 cm tall at the two lower elevations compared with 57% at 1,050 m, where putative freezing damage was especially noticeable, suggesting that nurse plants protect from low temperature damage. Spine shading of the stem doubled from the lowest to the highest elevation. Net CO2 uptake, which followed a Crassulacean acid metabolism pattern, was maximal at day/night air temperatures of 25/15°C and was halved by 4 weeks of drought and by reducing the photosynthetic photon flux from 30 to 12 mol m-2 day-1. The root system of O. acanthocarpa was shallow, with a mean depth of only 9 cm for the largest plants. Root growth was substantial and similar for plants at 25/15°C and 35/25°C, decreasing over 70-fold at 15/5°C and 45/35°C. Based on cellular uptake of the vital stain neutral red, neither roots nor stems tolerated tissue temperatures below -5°C for 1 h while both showed substantial high temperature acclimation, roots tolerating 1 h at 61°C and stems 1 h at 70°C for plants grown at 35/25°C. The increase in height and frequency of O. acanthocarpa with elevation apparently reflected both a greater ability for net CO2 uptake and greater root growth and hence water uptake. This species achieves its greatest ecological success at elevations where it becomes vulnerable to low temperature damage.  相似文献   

2.
Growth and photosynthetic responses of dwarf apple saplings (Malus domestica Borkh. cv. Fuji) acclimated to 3 years of exposure to contrasting atmospheric CO2 concentrations (360 and 650 µmol mol-1) in combination with current ambient or elevated (ambient +5°C) temperature patterns were determined. Four 1-year-old apple saplings grafted onto M.9 rootstocks were each enclosed in late fall 1997 in a controlled environment unit in nutrient-optimal soil. Soil moisture regimes were automatically controlled by drip irrigation scheduled at 50 kPa of soil moisture tension. For the elevated CO2 concentration alone, overall tree growth was suppressed. However, tree growth was slightly enhanced when warmer temperatures were combined with the elevated CO2 concentration. Neither temperature nor CO2 concentration affected leaf chlorophyll content and stomatal density. The elevated CO2 concentration decreased mean leaf area, but increased starch accumulation, thus resulting in a higher specific dry mass of leaves. An elevated temperature reduced starch accumulation. Light-saturated rates of leaf photosynthesis were suppressed due to the elevated CO2 concentration, but this effect was removed or enhanced with warmer temperatures. The elevated CO2 concentration increased the optimum temperature for photosynthesis by ca. 4°C, while the warmer temperature did not. The results of this study suggested that the long-term adaptation of apple saplings to growth at an elevated CO2 concentration may be associated with a potential for increased growth and productivity, if a doubling of the CO2 concentration also leads to elevated temperatures.  相似文献   

3.
Synopsis Temperature is the most important and least well documented environmental entity affecting reproduction and feeding of elasmobranch fishes, but it is unclear to what extent these fish may exploit behavioral thermoregulation to optimize physiological processes. Laboratory thermal preference determinations are important to understanding behavioral processes because they provide the vital quantitative link between environment, physiology, and adaptive behavior. Temperature preference data were collected on Atlantic stingrays, Dasyatis sabina (Lesueur) to assess the fishs’ ability to behaviorally optimize feeding and reproduction. Groups of male and pregnant female Atlantic stingrays exhibited statistically higher preferred median temperatures (26.2 and 26.1°C, respectively) than non-pregnant females (25.3°C; One-Way ANOVA on ranked data, F [2,26] = 3.72, p=0.038). Median preferred temperatures in unfed stingrays of both genders ranged from 24.5 to 31.0°C, whereas, fed fish preferred temperatures between 23.5 and 27.5°C. Unfed stingrays preferred a median temperature of 24.5°C; however, after feeding fish preferred significantly warmer water temperatures of 25.7°C (Wilcoxon one-tail, matched-pairs, signed rank analysis; p<0.088). While overall differences were subtle, small preference adjustments can have important physiological consequences. For example, the 1°C increase seen in pregnant females over non-pregnant fish would reduce gestation time by as much as two weeks. Likewise, by moving to cooler water after feeding, stingrays may increase nutrient uptake efficiency by reducing evacuation rates. Our data indicate that movement and distribution of Atlantic stingrays are dictated, in part, by temperature effects on physiology.  相似文献   

4.
C4 plants are uncommon in cold environments and do not generally occur in the alpine tundra. In the White Mountains of California, however, the C4 grass Muhlenbergia richardsonis is common in the alpine zone at 3,300-3,800 m, with the highest population observed at 3,960 m (13,000 feet) above sea level. This is the highest reported C4 species in North America and is near the world altitude limit for C4 plants (4,000-4,500 m). Above 3,800 m, M. richardsonis is largely restricted to southern slope aspects, with greatest frequency on southeast-facing slopes. In open tundra, M. richardsonis formed prostrate mats with a mean height of 2.5 cm. Neighboring C3 grasses were two to three times taller. Because of its short stature, leaf temperature of M. richardsonis was greatly influenced by the boundary layer of the ground, rising over 20°C above air temperature in full sun and still air and over 10°C above air temperature in full sun and wind velocity of 1-4 m s-1. Thus, although air temperatures did not exceed 15°C, midday leaf temperatures of M. richardsonis were routinely between 25°C and 35°C, a range favorable to C4 photosynthesis. At night, leaf temperature of M. richardsonis was often 5-12°C below air temperature, resulting in regular exposure to subzero temperatures and frosting of the leaves. No visible injury was associated with exposure to freezing night temperatures. The presence of M. richardsonis in the alpine zone demonstrates that C4 plants can tolerate extreme cold during the growing season. The localization to microsites where leaf temperatures can exceed 25°C during the day, however, indicates that even when cold tolerant, C4 plants still require periods of high leaf temperature to remain competitive with C3 species. In this regard, the prostrate growth form of M. richardsonis compensates for the alpine climate by allowing sufficient heating of the leaf canopy during the day.  相似文献   

5.
Post-storage gas exchange parameters like CO2 assimilation, stomatal conductance, transpiration, water use efficiency and intercellular CO2 concentrations, together with several chlorophyll a fluorescence parameters: Fo, Fv, Fv/Fm, Fm/Fo and Fv/Fo were examined in radiata pine (Pinus radiata D. Don) seedlings that were stored for 1, 8 or 15 days at 4° or 10°C with or without soil around the roots. Results were analysed in relation to post-storage water potential and electrolyte leakage in order to forecast their vitality (root growth potential) following cold storage, and post-planting survival potential under optimal conditions. During storage at 4° and 10°C, photosynthesis was reduced, being more pronounced in bare-root seedlings than in seedlings with soil around the roots. The depletion of CO2 assimilation seemed not to be solely a stomatal effect as effects on chloroplasts contributed to this photosynthetic inhibition. Thus, the fall in the ratios Fv/Fm, Fv/Fo and Fm/Fo indicated photochemical apparatus damage during storage. Photosynthetic rate was positively correlated with the root growth index and new root length showing that new root growth is dependent primarily on current photosynthesis. Pre-planting exposure of bare-root radiata pine seedlings to temperatures of 10°C for more than 24 h during transportation or storage is not recommended.  相似文献   

6.
The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three‐fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding.  相似文献   

7.
Temperature and starvation were found to be factors which affected the PPP dehydrogenase activities in brook trout liver. Fish acclimated at 5 °C possessed greater levels of G6PD, H6PD, and 6PGD activity than those fish maintained at 10 or 15 °C. This phenomenon was probably associated with increased lipogenesis during cold acclimation.During starvation hepatic G6PD and 6PGD activities decreased, whereas H6PD activity increased slightly. Upon refeeding, the G6PD level gradually increased, but the “overshoot” in enzyme activity reported in mammalian studies was not observed.When both cold acclimation and starvation were studied simultaneously, regulation by temperature was initially the dominant control factor. After 6 wk at 5 °C, there was no difference in specific activities between starved and fed fish. However, fish maintained at 5 °C for longer than 2 mo did show the normal response to starvation and refeeding. Therefore, regulation of the PPP by temperature appears to be a transitory phenomenon and may be associated with temporary metabolic reorganization in the fish.  相似文献   

8.
Culture conditions in growth and esterase production by a newly isolated Lactobacillus casei CL96 were investigated using a dextrose-free MRS medium supplemented with different sugars in a 2 l fermentor at different pHs (4.0-9.0) and temperatures (20-50°C). The optimal growth was obtained in basal MRS medium containing 1% (w/v) lactose at pH 7.0 and 30°C. The maximal esterase production was obtained intracellularly during the late logarithmic phase, but during the stationary phase, the esterase activity was released in the culture medium. The enzyme activity was maximal at pH 7.0 and 37°C. Among various substrates (C2-C16) tested, the highest activity was towards C6 and C8. Though the enzyme was produced constitutively, the tributylin induced the enzyme production by 2.5 fold. L. casei CL96 esterase was very active at neutral pH and ambient temperature and might be suitable for biotechnological applications in the dairy industry.  相似文献   

9.
In the laboratory rock elephant shrews (Elephantulus myurus; mean body mass 56.6 g) displayed the lowest torpor Tb min yet recorded (ca. 5°C) in a placental daily heterotherm. It was unknown whether these low Tbs were characteristic of daily heterothermy in free-ranging animals. It was also unclear how cost effective these low Tbs were since considerable energy is required to arouse from low Tbs on a daily basis. We continuously measured body temperature once every hour for 85 days in 13 free-ranging E. myurus from May to August 2001 (winter) in Weenen Game Reserve, KwaZulu-Natal, South Africa. We recorded a total of 412 torpor bouts. Free-ranging E. myurus had a high propensity for torpor with females displaying higher torpor frequency than males. The lowest Tb recorded was 7.5°C at Ta=2.7°C and the minimum torpor Tb was strongly correlated with ambient temperature. Torpor arousal was tightly coupled with ambient temperature cycles. Low torpor Tb min at low Tas was therefore cost-effective because the animals offset the high cost of arousal through exogenous passive heating. Laboratory studies under constant ambient temperatures may therefore underestimate the energetic benefits of torpor in free-ranging small mammals that inhabit regions where seasonality is moderate.  相似文献   

10.
Fast-start performance associated with escape behaviour was investigated in the sub-Antarctic notothenioid Eleginops maclovinus from the Beagle Channel, Tierra del Fuego, Argentina (mean winter water temperature 4°C, mean summer water temperature 10°C). Fish acclimated to 8.5°C for 2 months were filmed at 2, 4, 6, 8 and 10°C. Escape responses were temperature dependent over the range of temperatures tested. Maximum length-specific velocity ([^(V)]max )(\hat V_{\max } ) , maximum length-specific acceleration (Âmax) and inertial power output (Piner) increased significantly with temperature. Q10 values for [^(V)]max\hat V_{\max } , Âmax and Piner were 1.90, 3.27 and 8.90, respectively. Non-dimensional curvature of the spine ([^(c)])(\hat c) also varied significantly with temperature, but was higher at low temperatures. The values of [^(c)]\hat c were threefold lower than previously reported for Antarctic notothenioids and similar to the values for temperate species. The results indicate that the high values of [^(c)]\hat c observed during escape behaviour in Antarctic notothenioids are not a universal feature of the suborder. A greater flexion of the body during fast starts is therefore a promising candidate for a specialised feature of behaviour linked to low-temperature performance.  相似文献   

11.
Filtration was studied in two Arctic clams, Hiatella arctica and Mya sp., collected in Young Sound, Northeast Greenland. Clearance rates were determined as a function of ambient temperature and algal cell concentration, using the clearance method and feeding with a unicellular flagellate. For both species, clearance rates increased with increasing temperature from <у up to 4-8°C. At higher temperatures, filtration ceased and the clams closed their valves. Clearance rates were also determined in temperate specimens of H. arctica collected on the west coast of Sweden. For these specimens, clearance rates increased with increasing temperature from 0 to 18-20°C. When weight-specific clearance rates were compared between the two populations and between species, there were no differences at 1°C. Clearance rates in Arctic H. arctica were maximal at algal cell concentrations corresponding to 2.5-8 µg chlorophyll a l-1. Temperature compensation in Arctic bivalves is discussed and it is concluded that adaptations to constant low temperatures consist of a lower minimum temperature, for active filtration. Low clearance rates due to low temperatures did not seem to limit growth, under the prevailing conditions in Young Sound.  相似文献   

12.
Low temperature effects on photosynthesis and growth of grapevine   总被引:7,自引:0,他引:7  
Growth and photosynthesis of grapevine (Vitis vinifera L.) planted on two sloping cool climate vineyards were measured during the early growth season. At both vineyards, a small difference in mean minimum air temperature (1–3 °C) between two microsites accumulated over time, producing differences in shoot growth rate. The growth rates of the warmer (upper) microsite were 34–63% higher than the cooler (lower) site. Photosynthesis measurements of both east and west canopy sides revealed that the difference in carbon gain between the warmer and cooler microsites was due to low temperatures restricting the photosynthetic contribution of east‐facing leaves. East‐facing leaves at the warmer microsite experienced less time at suboptimal temperature while being exposed to high irradiance, contributing to an average 10% greater net carbon gain compared to the east‐facing leaves at the cooler microsite. This chilling‐induced reduction in photosynthesis was not due to net photo‐inhibition. Further analysis revealed that CO2‐ and light‐saturated photosynthesis of grapevines was restricted by stomatal closure from 15 to 25 °C and by a limitation of RuBP regeneration and/or end‐product limitation from 5 to 15 °C. Changes in photosynthetic carboxylation efficiency implied that Rubisco activity may also play a regulatory role at all temperatures. This restriction of total photosynthetic carbon gain is proposed to be a major contributor to the temperature dependence of growth rate at both vineyards during the early season growth period.  相似文献   

13.
As part of our studies to examine the molecular basis of cold-adaptation, we have determined the kinetic properties, thermal stability and deduced amino acid sequence of the enzyme lactate dehydrogenase (LDH) from an Antarctic zoarcid fish, Lycodichthys dearborni. Unlike Antarctic notothenioid fish which are endemic to the Southern Ocean, zoarcid fish are cosmopolitan and have a substantially longer evolutionary history as a sub-order. The A4-LDH isoform was isolated and purified from the white muscle of L. dearborni. The kinetic parameters KmPYR and kcat were determined at temperatures from 0 to 25°C. KmPYR was substantially higher at low temperatures than those from Antarctic and temperate notothenioid fish, whereas kcat at these temperatures was essentially the same as those of the other fish LDH in this study. The sequence of L. dearborni A4-LDH was determined from cDNA derived from white muscle RNA and found to be similar to, but distinct from, the A4-LDH sequences of Antarctic notothenioid fish. Molecular modelling based on the structure of the A4-LDH from Pagothenia borchgrevinki suggested that three conservative amino acid changes within the core of the protein that are not directly part of the active site but which might nonetheless influence the active site, may be important in cold-adaptation in L. dearborni A4-LDH, and that several other changes on the surface of the protein might also play a role in cold-adaptation.  相似文献   

14.
The capacity of sub‐yearling Siberian sturgeon (Acipenser baerii Brandt, 1869) (19.7 ± 0.8 g) to show compensatory growth was assessed for a 40‐day period for the effects of short‐term starvation and refeeding on growth, feeding performance and body composition. After acclimation, 25 experimental fish were randomly distributed among twelve 500‐L cylindrical fiberglass tanks with a flow‐through system. The fish were subjected to four different feeding regimes: control, which was fed four times daily to apparent satiation; T1: four periods of 2 days starvation alternating with 8 days re‐feeding; T2: two periods of 4 days starvation alternating with 16 days refeeding; T3: an 8 days starvation period followed by 32 days refeeding. At the end of the experiment, the deprived fish attained body weights comparable to those attained by the control fish. There were no differences in growth and feeding performances between the deprived and the control fish. Total protein and lipid contents of the control fish were significantly higher than that of T1 and T2 fish at the end of the experiment (P < 0.05). A significant difference in the energy content was observed between T2 and the control. Siberian sturgeon exhibited complete compensation, indicating a high ability of the deprived fish to grow sufficiently to fully compensate for weight loss during starvation. The results suggested that the feeding schedule involving starvation–refeeding cycles could be a promising feed management option for the culture of this species.  相似文献   

15.
Bacterial biomass and functional diversity in four marine and four freshwater samples, collected from Resolute Bay, Nunavut, Canada, were studied using fluorescent nucleic-acid staining and sole-carbon-source utilization. Viable microbial counts using the LIVE/DEAD BacLight Viability Kit estimated viable marine bacterial numbers from 0.7 to 1.8᎒6 cells/l, which were lower than viable bacterial numbers in freshwater samples (2.1-9.9᎒6 cells/l) (RCBD-ANOVA). Calculations of the Shannon-Wiener diversity index and average well colour development were based on substrate utilization in ECO-Biolog plates incubated at 4°C and 20°C for 38 and 24 days, respectively. The Shannon-Wiener diversity of the marine water samples was significantly greater ( x H'=2.40ǂ.08, P <0.005; RCBD-ANOVA) than that of freshwater samples ( x H'=1.20ǂ.00, P <0.005; RCBD-ANOVA). Differences in microbial diversity between fresh and marine water samples at 4°C ( x 4°C =2.01) and 20°C (x20°C =2.31) were also detected by RCBD-ANOVA analysis. Interactions between water type and incubation temperature were not significant ( F =1.926, F c=5.12). Principal component analysis revealed differences in metabolic substrate utilization patterns and, consequently, the microbial diversity between water types and samples.  相似文献   

16.
The year-round thermal habitat at sea for adult Atlantic salmon Salmo salar (n = 49) from northern Norway was investigated using archival tags over a 10 year study period. During their ocean feeding migration, the fish spent 90% of the time in waters with temperatures from 1.6–8.4°C. Daily mean temperatures ranged from −0.5 to 12.9°C, with daily temperature variation up to 9.6°C. Fish experienced the coldest water during winter (November–March) and the greatest thermal range during the first summer at sea (July–August). Trends in sea-surface temperatures influenced the thermal habitat of salmon during late summer and autumn (August–October), with fish experiencing warmer temperatures in warmer years. This pattern was absent during winter (November–March), when daily mean temperatures ranged from 3.4–5.0°C, in both colder and warmer years. The observations of a constant thermal habitat during winter in both warmer and colder years, may suggest that the ocean distribution of salmon is flexible and that individual migration routes could shift as a response to spatiotemporal alterations of favourable prey fields and ocean temperatures.  相似文献   

17.
Yoldia hyperborea is a deposit-feeding circumpolar protobranch that also inhabits muddy sediments of the cold water boreal system of Conception Bay, Newfoundland, Canada. Little is known about this species, despite its wide distribution and frequent high density in the benthos. The present work deals with oxygen consumption and ammonia excretion under cold ambient conditions. Y. hyperborea showed low basal metabolism [0.051 ml O2 hу·(g dry weight)у, T=у°C] and low ammonia excretion rates [4.212 µg·NH4-N·hу·(g dry weight)у, T=у°C]. Low metabolic activity could prove a useful strategy during periods of low food availability. In addition, Y. hyperborea was able to regulate its O2 consumption rate at very low pO2 levels, which may be advantageous for a species that may experience periods of hypoxia.  相似文献   

18.
The objective of this study was to evaluate the feeding rate of the great sturgeon (Huso huso) young of the year (YOY) and to investigate the effects of different feeding rates in maintaining the weight of fish during short periods of winter starvation. Six feeding rates of 0.2, 0.4, 0.6, 0.8, 1.0% body weight (BW) day?1 and feeding to satiation were considered for the first experiment. Each feeding rate was randomly assigned to three replicate tanks, with continuous feeding throughout a 5‐week winter period of water temperatures below 10°C. Fifteen fish were held in each of 18 tanks with an average initial body weight of 219.6 ± 6.9 g. After 5 weeks of feeding, the best performance was observed in fish fed 1% BW day?1, but negative growth was observed in fish fed 0.2% BW day?1. In the second experiment, fish were deprived of feed for 3 weeks at winter temperatures. Weights and condition factors of all fish decreased during starvation, while the differences in mean weight before and after the starvation period were not significant in fish fed a level of 0.2% BW day?1 and those fish fed to satiation. No mortality was recorded in either experiment. Results of this study indicate that a feeding rate of 1% BW day?1 would be sufficient for commercial fish farming of YOY of this species to maintain them over winter. Also, to maintain fish weights and prevent weight loss in overwintering ponds, a feeding rate of around 0.3% BW day?1 seems appropriate for hatcheries.  相似文献   

19.
Natural reproduction of pallid sturgeon Scaphirhynchus albus has been limited for decades and a recruitment bottleneck is hypothesized to occur during the larval stage of development. In this study, we evaluated the effects of water velocity and temperature on the swimming activity, energy use, settling behaviour and mortality of endogenously feeding larvae. The swimming activity of drifting sturgeon larvae (i.e., fish exhibiting negative rheotaxis) increased at low water velocity. In subsequent experiments, we observed greater energy depletion and resultant mortality of larvae in no-flow environments (0 cm s−1) compared to tanks with water velocity ranging from 3.5 to 8.3 cm s−1. The growth rate of drifting larvae was positively related to water temperature (18.7–23.3°C), but reduced growth rate at low water temperature (18.7°C) resulted in protracted development that extended average drift duration by ~4 days compared to larvae reared at 23.3°C. This study provides evidence that cooler summer water temperatures, characteristic of present-day conditions in the upper Missouri River, can reduce larval development and extend both the drift duration and distance requirements of S. albus. Moreover, if dispersed into low velocity environments, such as in reservoir headwaters, larvae may experience increased mortality owing to a mismatch between early life stage drift requirements and habitat conditions in the river. Manipulation of water releases to increase seasonal water temperature below dams may aid survival of S. albus larvae by shortening the time and distance spent drifting.  相似文献   

20.
  • 1.Male Uca pugilator whose major cheliped was immersed in 3 °C water bath experienced a significant drop in Tb. Thus, the enlarged claw of male Uca pugilator may have an unexplored function: thermoregulation.
  • 2.Crabs prefer warmer substrates (19–24 and 28–30 °C) over cooler (15–17 °C).
  • 3.Mean selected temperature (MST) may not be an accurate reflection of Tb. Crabs in a thermal chamber preferred temperatures between 25 and 30 °C but their average Tb was 23.2 °C.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号