首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free-living amoeboflagellate Naegleria fowleri is the only species infects humans world widely distributed. N. fowleri is the causative agent of very rare but severe brain infection called primary amoebic meningo-encephalitis (PAM), a rapidly fatal disease of the central nervous system mainly in immuno-compromised individuals. N. fowleri infects human through the entry of the nose, and it happens when human swimming or diving in warm freshwater, such as lakes, rivers and swimming pools. The disease is acute, and patients often die within 5–10 days and before the infectious agent can be diagnosed. Limited information is available about the existence of pathogenic N. fowleri, in Egypt, so the present of N. fowleri is an important public health. In the present study, we examined hundred water, dust and swap samples collected from 5 swimming pools in Cairo, Egypt. Based on morphological characteristics of trophozoite and cyst, flagellation test 56% of thermo-tolerant Naegleria like amoeba was detected. The incidence of thermo-tolerant free-living amoebae reached 84, 80and 70% from water, cotton swap and dust samples, respectively at cultivation temperature of 45 °C. The highest occurrence of thermo-tolerant amoebae were recorded in summer (100 & 87.5%) while the lowest one were recorded in winter (58 & 37.5%) in both water and dust samples, respectively. In swap samples, the highest occurrence of thermo-tolerant free-living amoeba was recorded in both summer and spring (100%), while the lowest one was recorded in winter (40%). N. fowleri was performed on 24 samples from a total of 56 (42.2%) samples which are positive by culture. Nested PCR using Mp2Cl5 gene primers that is unique to N. fowleri was carried out. The N. fowleri specific primer showed band at 166 bp against 24 of 56 (42.2%) samples. The majority of positive samples unique to N. fowleri was detected in water samples followed by swap samples and finally dust samples 14 of 24 (58%), 7 of 24 (29%), 3 of 24 (13%), respectively. In conclusion, swimming pools water may be the source of Naegleria invasion. The use of molecular methods to identify free-living amoebae N. fowleri could provide a more rapid means to diagnose infections caused by those amoebae.  相似文献   

2.
A survey was designed to know the concentration of Naegleria fowleri in recreational areas in Hornos, Sonora, during a year. Samples were taken monthly at La Isleta and Las Palmas and the total amoeba counts were obtained by the most probable number method (MPN). The identification of N. fowleri was made by PCR. The maximum concentration of total thermophilic amoebae was 9175 MPN/L for La Isleta and 3477 MPN/L for Las Palmas. Thermophilic Naegleria were present mainly during summer and fall. October’s concentrations were up to 201 MPN/L, at both places. The maximum concentrations of N. fowleri were 201 MPN/L and 18 MPN/L for La Isleta and Las Palmas respectively, and were isolated from August to October. The presence of N. fowleri in these particular natural bodies of water reinforces the need for adaptation of preventive measures to avoid cases of primary amoebic meningoencephalitis.  相似文献   

3.
Trophozoites of several isolates from one location in Australia have failed consistently to transform into flagellates, although they display all other characteristics of the genus Naegleria. When changing the standard transformation test, flagellates were produced. In phylogenetic trees derived from partial small subunit ribosomal DNA (SSUrDNA) sequences, one of these strains branches close to a cluster comprising N. clarki, N. australiensis, N. italica and N. jadini. It is proposed that these Australian isolates represent a new species, named N. fultoni (strain NG885). Failing to form flagellates since their isolation, even when different transformation procedures are used, are two Naegleria strains from Chile and Indonesia. In SSUrDNA-based phylogenetic trees the Chilean strain clusters with N. pussardi and the Indonesian strain clusters with N. galeacystis, but the degree of sequence difference from these described species (3.5% and 2.2%, respectively) is sufficient to propose that both of the strains represent new species, named N. chilensis (strain NG946) and N. indonesiensis (strain NG945), respectively. The close relationships between each of the new species and the Naegleria species with which they cluster in SSUrDNA-based trees were confirmed by ribosomal internal transcribed spacer region (ITS) sequence comparisxdons. In France, several non-flagellating N. fowleri strains were isolated from one location. ITS rDNA sequence comparisons indicated that they correspond to a ‘type’ of N. fowleri found in both Europe and the USA. A redefinition of the genus Naegleria is proposed as a consequence of these and previous findings.  相似文献   

4.
DAPI and Feulgen stains were used as specific DNA markers for studying the mitosis process in Naegleria fowleri. Both DAPI and Feulgen stains reacted with DNA in the nuclei of the amoebae. Representative figures of N. fowleri mitotic nuclei with a defined arrangement according to the phase of the cell cycle were observed. A notable characteristic is that the nucleolus is present throughout the stages of mitosis. During metaphase, several deeply stained DNA condensations following an elongated pattern were observed, corresponding almost certainly to tightly grouped chromosomes. Ultrastructural observations demonstrated that the nucleus divides by cryptomitosis, a process in which the nuclear membrane does not disappear during the mitosis. Centrioles were not found, and a spindle of microtubules was observed running the length of the nucleus from pole to pole however, they did not come to a focal point.  相似文献   

5.
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6–7.2 and 25–32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.  相似文献   

6.
Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.  相似文献   

7.
A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites.  相似文献   

8.
A study of amebas of the genera Naegleria, Acanthamoeba, Polysphondylium, and Didymium shows that a cytopathogenic agent that is filterable and passageable is present only in the strains of the Naegleria whether they are obtained free-living from soil samples (N. gruberi) or as pathogens from humans (N. fowleri). The agents obtained from the different Naegleria strains are similar in amount and in their cytopathogenic interaction with chick cultures. The agent has characteristics that distinguish it from the known viruses.  相似文献   

9.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

10.

Background

In Malaysia, researchers and medical practitioners are unfamiliar with Naegleria infections. Thus little is known about the existence of pathogenic Naegleria fowleri, and the resultant primary amoebic meningoencephalitis (PAM) is seldom included in the differential diagnosis of central nervous system infections. This study was conducted to detect the presence of Naegleria species in various environmental samples.

Methods/Findings

A total of 41 Naegleria-like isolates were isolated from water and dust samples. All these isolates were subjected to PCR using two primer sets designed from the ITS1-ITS2 regions. The N. fowleri species-specific primer set failed to produce the expected amplicon. The Naegleria genus-specific primers produced amplicons of 408 bp (35), 450 bp (2), 457 bp (2) or 381 bp (2) from all 41 isolates isolated from aquatic (33) and dust (8) samples. Analysis of the sequences from 10 representative isolates revealed that amplicons with fragments 408, 450 and 457 bp showed homology with non-pathogenic Naegleria species, and 381 bp showed homology with Vahlkampfia species. These results concurred with the morphological observation that all 39 isolates which exhibited flagella were Naegleria, while 2 isolates (AC7, JN034055 and AC8, JN034056) that did not exhibit flagella were Vahlkampfia species.

Conclusion

To date, pathogenic species of N. fowleri have not been isolated from Malaysia. All 39 isolates that produced amplicons (408, 450 and 457 bp) from the genus-specific primers were identified as being similar to nonpathogenic Naegleria. Amplicon 408 bp from 5 representative isolates showed 100% and 99.7% identity to Naegleria philippinensis isolate RJTM (AM167890) and is thus believed to be the most common species in our environment. Amplicons 450 bp and 457 bp were respectively believed to be from 2 new species of Naegleria, since representative isolates showed lower homology and had a longer base pair length when compared to the reference species in the Genbank, Naegleria schusteri (AJ566626) and Naegleria laresi (AJ566630), respectively.  相似文献   

11.
Naegleria gruberi is an amoeboflagellate found in soil; mitosis is restricted to the amoeboid phase of its life-cycle. Ultrastructural examination of mitotic stages has confirmed some aspects of karyokinesis reported in earlier light-microscopic studies and expanded on other features of nuclear division described in electron-microscopic studies of Naegleria The nuclear envelope remained intact throughout division, the nucleolus persisted, and centrioles were not found Chromosomes were indistinguishable at the ultrastructural level, nor was any evidence detected of sites of microtubular attachment to possible chromosomes. An interzonal body, formed during separation in two of the nucleolus, was not an invariable feature of mitosis. The same was true of the polar caps, which appeared to be little more than the ends of the mitotic spindle. It is suggested that, in line with comparable situations in other protists, expansion of the nuclear envelope is chiefly responsible for separation of the nucleus into two daughter nuclei.  相似文献   

12.
ABSTRACT. Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.  相似文献   

13.
Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.  相似文献   

14.
Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence.Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri.  相似文献   

15.
ABSTRACT Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.  相似文献   

16.
Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix‐assisted laser‐desorption‐ionization‐time‐of‐flight mass spectrometry MALDI‐TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF‐TOF instrument. MALDI‐TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI‐TOF MS fingerprinting is a rapid, reproducible, high‐throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents.  相似文献   

17.
Naegleria fowleri the causative agent of Primary Amoebic Meningoencephalitis, is ubiquitously distributed worldwide in various warm aquatic environments and soil habitats. The present study reports on the presence of Naegleria spp. in various water bodies present in Rohtak and Jhajjar district, of state Haryana, India. A total of 107 water reservoirs were screened from summer till autumn (2012 and 2013). In order to isolate Naegleria spp. from the collected water samples, the water samples were filtered and the trapped debris after processing were transferred to non-nutrient agar plates already seeded with lawn culture of Escherichia coli. Out of total 107 water samples, 43 (40%) samples were positive by culture for free living amoeba after incubation for 14 days at 37°C. To identify the isolates, the ITS1, 5.8SrDNA and ITS2 regions were targeted for PCR assay. Out of total 43 positive samples, 37 isolates were positive for Naegleria spp. using genus specific primers and the most frequently isolated species was Naegleria australiensis. Out of 37 Naegleria spp. positive isolates, 1 isolate was positive for Naegleria fowleri. The sequence analysis revealed that the Naegleria fowleri strain belonged to Type 2.  相似文献   

18.
Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult.  相似文献   

19.
Pernin P. 1984. Isoenzyme patterns of pathogenic and nonpathogenic thermophilic Naegleria strains by isoelectric focusing. International Journal for Parasitology14: 459–465. The isoenzymatic patterns of different strains of Naegleria were studied by isoelectric focusing (I.E.F.) on polyacrylamide gels for seven enzymatic activities (leucine amino peptidase; lactate dehydrogenase; glucose 6 phosphate dehydrogenase; propionyl esterase; glucose phosphate isomerase; malate dehydrogenase; acid phosphatase), two of which (lactate dehydrogenase and glucose 6 phosphate dehydrogenase) were being investigated for the first time. The three pathogenic N. fowleri strains share a common pattern for most of the enzymes tested except for glucose 6 phosphate dehydrogenase, and thus form a very homogeneous species, while thermophilic nonpathogenic strains show more heterogeneity particularly for leucine amino peptidase and glucose 6 phosphate dehydrogenase.I.E.F. must be considered as a supplementary and rapid method for the identification of N. fowleri and as a powerful tool to demonstrate the complexity of different genera of free-living amoebas.  相似文献   

20.
Fourteen strains of Naegleria australiensis, including the type strain, were compared for virulence for mice, maximum growth temperature, lectin agglutination, isoenzyme pattern, and total protein banding pattern. Their relation to other species of Naegleria also was compared by immunoelectrophoretic analysis. Strains with high virulence, comparable to that of N. fowleri, were found to be different in concanavalin A agglutination as well as with regard to zymograms and total protein patterns. Although serologically different from N. fowleri and reacting with N. australiensis antiserum in the fluorescent antibody test, these high-virulence strains differed in number of immunoelectrophoretic precipitin bands. Because of these results, the high-virulence strains are considered to be a subspecies of N. australiensis. The low-virulence strains showed minor differences from the type strain. Thus, N. australiensis does not appear to be as homogenous a species as N. fowleri. Pathogenic N. australiensis also seems to be more widespread than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号