首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In adipocytes from fed rats, the rate of fatty acid synthesis in the presence of glucose and insulin was inhibited 40% by valine (5 mm). tthis inhibition was largely abolished by the addition to the incubation medium of the transaminase inhibitor aminooxy acetate, and of pyruvate and agents which raise the intracellular pyruvate levels such as N,N,N1,N1-tetramethyl-p-phenylenediamine. Pyruvate output into the incubation medium from fat pads obtained from fed rats and incubated with glucose and insulin was decreased significantly by the addition of valine. When adipocytes were incubated under similar conditions, the final concentration of pyruvate in the incubation medium was 42 +/- 1.6 muM under control conditions and approximately one third of this value in the presence of 2.5 mM valine. Valine had no significant effect on pyruvate dehydrogenase (lipoate) (EC 1.2.4.1) activity when assayed in homogenates prepared from adipose tissue previously incubated for 60 min with the amino acid. Although the ketoacid analogue of valine alpha-ketoisovaleric acid, is a competitive inhibitor of pyruvate dehydrogenase (lipoate) (K1 = 1.4 mM), this cannot solely account for the valine-induced reduced rate of lipogenesis. Rather, the mechanism involves a reduction in pyruvate concentration and thereby a diminished flow through pyruvate dehydrogenase (lipoate). Details of the possible mechanism are discussed.  相似文献   

3.
The acetohydroxy acid synthase III isozyme, which catalyzes the first common step in the biosynthesis of isoleucine, leucine, and valine in Escherichia coli K-12, is composed of two subunits, the ilvI and ilvH gene products. A missense mutation in ilvH (ilvH612), which reduced the sensitivity of the enzyme to the end product inhibition by valine, also increased its specific activity and lowered the Km for alpha-acetolactate synthesis. The mutation increased the sensitivity of acetohydroxy acid synthase III to dialysis and heat treatment and reduced the requirement for thiamine pyrophosphate addition to the assay mixture for activity. A strain carrying the ilvH612 mutation grew better than a homologous ilvH+ strain in the presence of leucine. The data indicate that this is a consequence of a more active acetohydroxy acid synthase III isozyme rather than the result of an alteration of the leucine-mediated repression of the ilvIH operon.  相似文献   

4.
RNase G (rng) is an E. coli endoribonuclease that is homologous to the catalytic domain of RNase E (rne), an essential protein that is a major participant in tRNA maturation, mRNA decay, rRNA processing and M1 RNA processing. We demonstrate here that whereas RNase G inefficiently participates in the degradation of mRNAs and the processing of 9S rRNA, it is not involved in either tRNA or M1 RNA processing. This conclusion is supported by the fact that inactivation of RNase G alone does not affect 9S rRNA processing and only leads to minor changes in mRNA half-lives. However, in rng rne double mutants mRNA decay and 9S rRNA processing are more defective than in either single mutant. Conversely, increasing RNase G levels in an rne-1 rng::cat double mutant, proportionally increased the extent of 9S rRNA processing and decreased the half-lives of specific mRNAs. In contrast, variations in the amount of RNase G did not alter tRNA processing under any circumstances. Thus, the failure of RNase G to complement rne mutations, even when overproduced at high levels, apparently results from its inability to substitute for RNase E in the maturation of tRNAs.  相似文献   

5.
6.
M Freundlich 《Cell》1977,12(4):1121-1126
Derepression of the isoleucine and valine biosynthetic enzymes was strongly impaired in a relA strain of E. coli K-12 grown in an amino acid-glucose medium. The expression of the isoleucine and valine operons during leucine starvation was markedly defective in the relA mutant as compared to an isogenic rel+ strain. Downshift to a poor carbon and energy source or the addition of cyclic AMP to the glucose medium allowed normal derepression in the relA mutant of one of the isoleucine and valine enzymes, acetohydroxy acid synthase. The other isoleucine and valine enzymes failed to derepress under these conditions, in contrast to the high enzyme levels in the rel+ parent. No increase in acetohydroxy acid synthase was found in relA cya or relA crp strains during glycerol or pyruvate downshift. Cyclic AMP allowed derepression in the relA cya mutant but not in the relA crp strain. These data strongly suggest that the relA requirement for normal expression of acetohydroxy acid synthase can be replaced by cyclic AMP.  相似文献   

7.
Isolation of a yeast mutant deficient in pyruvate carboxylase activity   总被引:1,自引:0,他引:1  
To improve our understanding of the catalytic mechanism and regulatory properties of pyruvate carboxylase (EC 6.4.1.1), an important biotin-dependent enzyme, we have sought to isolate mutants in Saccharomyces cerevisiae which are defective in pyruvate carboxylase activity. One mutant was isolated which was unable to grow on glucose minimal medium unless supplemented with aspartate. Although the enzyme had only 25% of the wild type pyruvate carboxylase activity, Western analysis and RNase protection analysis demonstrated that the mutant gene was expressed at approximately 70% of the wild type level. On the basis of genetic crosses and complementation tests, we have attributed the defect to mutations in the PYC gene encoding pyruvate carboxylase.  相似文献   

8.
Otsuka Y  Yonesaki T 《Genetics》2005,169(1):13-20
The dmd gene of bacteriophage T4 is required for the stability of late-gene mRNAs. When this gene is mutated, late genes are globally silenced because of rapid degradation of their mRNAs. Our previous work suggested that a novel Escherichia coli endonuclease, RNase LS, is responsible for the rapid degradation of mRNAs. In this study, we demonstrated that rnlA (formerly yfjN) is essential for RNase LS activity both in vivo and in vitro. In addition, we investigated a role of RNase LS in the RNA metabolism of E. coli cells under vegetative growth conditions. A mutation in rnlA reduced the decay rate of many E. coli mRNAs, although there are differences in the mutational effects on the stabilization of different mRNAs. In addition, we found that a 307-nucleotide fragment with an internal sequence of 23S rRNA accumulated to a high level in rnlA mutant cells. These results strongly suggest that RNase LS plays a role in the RNA metabolism of E. coli as well as phage T4.  相似文献   

9.
10.
The effect of poxB gene knockout on metabolism in Escherichia coli was investigated in the present paper based on the growth characteristics and the activities of the enzymes involved in the central metabolic pathways. The absence of pyruvate oxidase reduced the glucose uptake rate and cell growth rate, and increased O2 consumption and CO2 evolution. The enzyme assay results showed that although glucokinase activity increased, the flux through glycolysis was reduced due to the down-regulation of the other glycolytic enzymes such as 6-phosphofructosekinase and fructose bisphosphate aldolase in the poxB mutant. TCA cycle enzymes such as citrate synthase and malate dehydrogenase were repressed in the poxB mutant when the cells were cultivated in LB medium. The pyruvate oxidase mutation also resulted in the activation of glucose-6-phosphate dehydrogenase and acetyl-CoA synthetase. All these results suggest that pyruvate oxidase is not only a stationary-phase enzyme as previously known, and that the removal of the poxB gene affects the central metabolism at the enzyme level in E. coli.  相似文献   

11.
Cofactor recycling is known to be crucial for amino acid synthesis. Hence, cofactor supply was now analyzed for L ‐valine to identify new targets for an improvement of production. The central carbon metabolism was analyzed by stoichiometric modeling to estimate the influence of cofactors and to quantify the theoretical yield of L ‐valine on glucose. Three different optimal routes for L ‐valine biosynthesis were identified by elementary mode (EM) analysis. The modes differed mainly in the manner of NADPH regeneration, substantiating that the cofactor supply may be crucial for efficient L ‐valine production. Although the isocitrate dehydrogenase as an NADPH source within the tricarboxylic acid cycle only enables an L ‐valine yield of YVal/Glc = 0.5 mol L ‐valine/mol glucose (mol Val/mol Glc), the pentose phosphate pathway seems to be the most promising NADPH source. Based on the theoretical calculation of EMs, the gene encoding phosphoglucoisomerase (PGI) was deleted to achieve this EM with a theoretical yield YVal/Glc = 0.86 mol Val/mol Glc during the production phase. The intracellular NADPH concentration was significantly increased in the PGI‐deficient mutant. L ‐Valine yield increased from 0.49 ± 0.13 to 0.67 ± 0.03 mol Val/mol Glc, and, concomitantly, the formation of by‐products such as pyruvate was reduced. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
A mutant of Corynebacterim glutamicum ('Brevibacterium flayum') ATCC14067 with a reduced H+-ATPase activity, F172-8, was obtained as a spontaneous neomycin-resistant mutant. The ATPase activity of strain F172-8 was reduced to about 25% of that of the parental strain. Strain F172-8 was cultured in a glutamic-acid fermentation medium containing 100 g/l of glucose using ajar fermentor. It was found that glucose consumption per cell during the exponential phase was higher by 70% in the mutant than in the parent. The respiration rate per cell of the mutant also increased to twice as much as that of the parent. However, the growth rate of the mutant was lower than that of the parent. Under those conditions, the parent produced more than 40 g/l glutamic acid, while the mutant hardly produced any glutamic acid. Instead the mutant produced 24.6 g/l lactic acid as the main metabolite of glucose. Remarkably, the accumulation of pyruvate and pyruvate-family amino acids, i.e., alanine and valine, was detected in the mutant. On the other hand, the parent accumulated alpha-ketoglutaric acid and a glutamate-family amino acid, proline, as major by-products. It was concluded that the decrease in the H+-ATPase activity caused the above-mentioned metabolic changes in strain F172-8, because a revertant of strain F172-8, R2-1, with a H+-ATPase activity of 70% of that of strain ATCC14067, showed a fermentation profile similar to that of the parent. Sequence analyses of the atp operon genes of these strains identified one point mutation in the gamma subunit in strain F172-8.  相似文献   

13.
14.
15.
RNase III is an endonuclease involved in processing both rRNA and certain mRNAs. To help determine whether RNase III (rnc) is required for general mRNA turnover in Escherichia coli, we have created a deletion-insertion mutation (delta rnc-38) in the structural gene. In addition, a series of multiple mutant strains containing deficiencies in RNase II (rnb-500), polynucleotide phosphorylase (pnp-7 or pnp-200), RNase E (rne-1 or rne-3071), and RNase III (delta rnc-38) were constructed. The delta rnc-38 single mutant was viable and led to the accumulation of 30S rRNA precursors, as has been previously observed with the rnc-105 allele (P. Gegenheimer, N. Watson, and D. Apirion, J. Biol. Chem. 252:3064-3073, 1977). In the multiple mutant strains, the presence of the delta rnc-38 allele resulted in the more rapid decay of pulse-labeled RNA but did not suppress conditional lethality, suggesting that the lethality associated with altered mRNA turnover may be due to the stabilization of specific mRNAs. In addition, these results indicate that RNase III is probably not required for general mRNA decay. Of particular interest was the observation that the delta rnc-38 rne-1 double mutant did not accumulate 30S rRNA precursors at 30 degrees C, while the delta rnc-38 rne-3071 double mutant did. Possible explanations of these results are discussed.  相似文献   

16.
The Streptomyces coelicolor gene SCC88.10c encodes a protein (RNase ES) which is homologous to endoribonucleases in the RNase E/G family. We expressed S. coelicolor RNase ES as a 6 x His-tagged protein in an Escherichia coli mutant carrying a rng (which encodes RNase G) or a rne (which encodes RNase E) mutation to study whether S. coelicolor RNase ES is able to complement these mutations in host E. coli cells. The results clearly indicated that the S. coelicolor RNase ES can partially abrogate either the rng::cat or rne-1 mutation, as measured by the ability to suppress the several aberrant phenotypes resulting from the rng or rne mutation. Thus, S. coelicolor RNase ES appears to have the dual ability to supplant the functions of both RNase G and RNase E in E. coli.  相似文献   

17.
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.  相似文献   

18.
In order to study the physiological role of acetate metabolism in Escherichia coli, the growth characteristics of an E. coli W3100 pta mutant defective in phosphotransacetylase, the first enzyme of the acetate pathway, were investigated. The pta mutant grown on glucose minimal medium excreted unusual by-products such as pyruvate, D-lactate, and L-glutamate instead of acetate. In an analysis of the sequential consumption of amino acids by the pta mutant growing in tryptone broth (TB), a brief lag between the consumption of amino acids normally consumed was observed, but no such lag occurred for the wild-type strain. The pta mutant was found to grow slowly on glucose, TB, or pyruvate, but it grew normally on glycerol or succinate. The defective growth and starvation survival of the pta mutant were restored by the introduction of poly-beta-hydroxybutyrate (PHB) synthesis genes (phbCAB) from Alcaligenes eutrophus, indicating that the growth defect of the pta mutant was due to a perturbation of acetyl coenzyme A (CoA) flux. By the stoichiometric analysis of the metabolic fluxes of the central metabolism, it was found that the amount of pyruvate generated from glucose transport by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exceeded the required amount of precursor metabolites downstream of pyruvate for biomass synthesis. These results suggest that E. coli excretes acetate due to the pyruvate flux from PTS and that any method which alleviates the oversupply of acetyl CoA would restore normal growth to the pta mutant.  相似文献   

19.
20.
In the course of the Bacillus subtilis genome sequencing project, we identified an open reading frame encoding a putative 16.4?kDa protein. This protein shows, respectively, 34% and 25% identity with the Escherichia coli regulatory proteins Lrp and AsnC. Phylogenetic analysis suggests that it represents a new group in the AsnC-Lrp family. Sequence comparisons, as well as immunodetection experiments, lead to the conclusion that the product of this B. subtilislrp-likegene is a bona fide Lrp protein – the first one to be detected in gram-positive bacteria. When expressed in E.?coli, the B. subtilis Lrp-like protein is able to repress, by about two-fold, the expression of the ilvIH operon which is normally regulated by E. coli Lrp, indicating functional similarity in their regulatory targets. Vegetative growth of a B. subtilis lrp-like mutant is not affected in rich medium. However, the lrp-like mutation causes a transitory inhibition of growth in minimal medium in the presence of valine and isoleucine, which is relieved by leucine. This points to a possible role in regulation of amino acid metabolism. In addition, sporogenesis occurs earlier in the lrp-like mutant than in the reference strain, implying that the B. subtilis Lrp-like protein plays a role in the growth phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号