首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The wild-type allele of the gene defective dorsal discs (ddd) is required for the normal development of the dorsal thoracic discs in Drosophila melanogaster. In ddd mutant larvae the dorsal discs (wing, haltere, and humeral) are greatly reduced in size or absent while the ventral discs (leg) are unaffected. We have examined the function of the ddd+ gene in wing development. The ddd+ product is not involved in the initial determination of wing cells but rather is required for their subsequent proliferation during the larval period. Analysis of chimaeras shows that there is a requirement for ddd+ gene expression in wing discs, but it is sufficient for normal development that only some cells in a disc express the gene. We propose that the ddd+ product is involved in the synthesis of a factor which is required for the normal growth of wing discs and which can be transferred between wing disc cells.  相似文献   

3.
During animal development, organ size is determined primarily by the amount of cell proliferation, which must be tightly regulated to ensure the generation of properly proportioned organs. However, little is known about the molecular pathways that direct cells to stop proliferating when an organ has attained its proper size. We have identified mutations in a novel gene, shar-pei, that is required for proper termination of cell proliferation during Drosophila imaginal disc development. Clones of shar-pei mutant cells in imaginal discs produce enlarged tissues containing more cells of normal size. We show that this phenotype is the result of both increased cell proliferation and reduced apoptosis. Hence, shar-pei restricts cell proliferation and promotes apoptosis. By contrast, shar-pei is not required for cell differentiation and pattern formation of adult tissue. Shar-pei is also not required for cell cycle exit during terminal differentiation, indicating that the mechanisms directing cell proliferation arrest during organ growth are distinct from those directing cell cycle exit during terminal differentiation. shar-pei encodes a WW-domain-containing protein that has homologs in worms, mice and humans, suggesting that mechanisms of organ growth control are evolutionarily conserved.  相似文献   

4.
5.
Summary Imaginal wing discs from late third-instar larvae were gammairradiated to induce clones of rapidly growingMinute cells in a background of slowly growingMinute cells and culturedin vivo for periods up to 18 days. Clones in discs cultured for 16 to 18 days did not grow significantly larger than clones in uncultured controls, indicating that competition between populations of cells having potentially different mitotic rates does not occur in imaginal discs after their growth is completed.  相似文献   

6.
The time during which β-ecdysone is required for the apolysis and imaginal differentiation of wing discs of Drosophila both in vitro and in situ has been examined, and it is concluded that β-ecdysone is required as a sustained stimulus rather than as a trigger for differentiation. These results are compared with the requirement for β-ecdysone for the puffing of salivary gland polytene chromosomes during the prepupal stage (Richards, G. P., 1976, Develop. Biol.48, 191–195). It is suggested that imaginal discs and larval salivary glands require different exposures to β-ecdysone to fulfill their developmental commitments and that the drop in β-ecdysone titer during the early prepupal stage, which is necessary for the subsequent puffing of the polytene chromosomes, plays little or no part in imaginal disc differentiation.  相似文献   

7.
Experimental data on spatial and temporal distributions of mosaic clones in Drosophila wing imaginal disc were analyzed. Long-lived proliferation centers (PR1, PR2, and PR3) and areas with decreased proliferation activity were found in the notum region of the disc. Simulation of the growth kinetics of mosaic patches demonstrated that the cell cycle in proliferation centers PR2 and PR3 was shorter than the average cycle in the disc and in the center PR1. A nonrandom clustering of rapidly dividing cells was observed in the PR2, but not in the other cases. The reason why the cell-cycle duration and the clustering of dividing cells may not coincide is discussed in terms of the recruitment of nondividing cells into the cell cycle. The simulation of the time course of the first and second moments of the size distribution of mosaic clones allowed the variance of cell-cycle progression rates to be determined and demonstrated that a model with a continuous cell-cycle rates gave a better fit to the data than the transition probability model of Smith and Martin.  相似文献   

8.
9.
10.
Shi W  Stampas A  Zapata C  Baker NE 《Genetics》2003,165(4):1869-1879
Each ommatidium of the Drosophila eye is constructed by precisely 19 specified precursor cells, generated in part during a second mitotic wave of cell divisions that overlaps early stages of ommatidial cell specification. Homozygotes for the pineapple eye mutation lack sufficient precursor cells due to apoptosis during the period of fate specification. In addition development is delayed by apoptosis during earlier imaginal disc growth. Null alleles are recessive lethal and allelic to l(2)31Ek; heteroallelic combinations can show developmental delay, abnormal eye development, and reduced fertility. Mosaic clones autonomously show extensive cell death. The pineapple eye gene was identified and predicted to encode a novel 582-amino-acid protein. The protein contains a novel, cysteine-rich domain of 270 amino acids also found in predicted proteins of unknown function from other animals.  相似文献   

11.
BACKGROUND: Cell growth arrest and autophagy are required for autophagic cell death in Drosophila. Maintenance of growth by expression of either activated Ras, Dp110, or Akt is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the mechanism that controls growth arrest is unknown. Although the Warts (Wts) tumor suppressor is a critical regulator of tissue growth in animals, it is not clear how this signaling pathway controls cell growth. RESULTS: Here, we show that genes in the Wts pathway are required for salivary gland degradation and that wts mutants have defects in cell growth arrest, caspase activity, and autophagy. Expression of Atg1, a regulator of autophagy, in salivary glands is sufficient to rescue wts mutant salivary gland destruction. Surprisingly, expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts mutants. By contrast, misexpression of the Yki target bantam was able to inhibit salivary gland cell death, even though mutations in bantam fail to suppress the wts mutant salivary gland-persistence phenotype. Significantly, wts mutant salivary glands possess altered phosphoinositide signaling, and decreased function of the class I PI3K-pathway genes chico and TOR suppressed wts defects in cell death. CONCLUSIONS: Although we have previously shown that salivary gland degradation requires genes in the Wts pathway, this study provides the first evidence that Wts influences autophagy. Our data indicate that the Wts-pathway components Yki, Sd, and bantam fail to function in salivary glands and that Wts regulates salivary gland cell death in a PI3K-dependent manner.  相似文献   

12.
We have examined wound healing during regeneration of Drosophila wing imaginal discs fragments by confocal microscopy and assessed the role of components of the JNK pathway in this process. After cutting, columnar and peripodial epithelia cells at the wound edge start to close the wound through formation and contraction of an actin cable. This is followed by a zipping process through filopodial protrusions from both epithelia knitting the wound edges from proximal to distal areas of the disc. Activation of the JNK pathway is involved in such process. puckered (puc) expression is induced in several rows of cells at the edge of the wound, whereas absence of JNK pathway activity brought about by hemipterous, basket, and Dfos mutants impair wound healing. These defects are accompanied by lowered or loss of expression of puc. In support of a role of puc in wound healing, hep mutant phenotypes are rescued by reducing puc function, whereas overexpression of puc inhibits wound healing. Altogether, these results demonstrate a role for the JNK pathway in imaginal disc wound healing, similar to that reported for other healing processes such as embryonic dorsal closure, thoracic closure, and adult epithelial wound healing in Drosophila. Differences with such processes are also highlighted.  相似文献   

13.
We have further characterised our tissue culture system for the growth in vitro of Drosophila imaginal disc cells, including the culture medium requirements for optimum growth and we have adjusted the protocol recommended for the initiation of cultures. Many imaginal disc fragments become organised into vesicles, and some of these secrete extracellular material into the lumen. Sensory axons differentiate in primary disc cultures, in the absence of bristle formation. The early stages of cell division to form a cell line are recorded.  相似文献   

14.
Jones C  Reifegerste R  Moses K 《Genetics》2006,173(2):793-808
In the developing Drosophila eye, the morphogenetic furrow is a developmental organizing center for patterning and cell proliferation. The furrow acts both to limit eye size and to coordinate the number of cells to the number of facets. Here we report the molecular and functional characterization of Drosophila mini-me (mnm), a potential regulator of cell proliferation and survival in the developing eye. We first identified mnm as a dominant modifier of hedgehog loss-of-function in the developing eye. We report that mnm encodes a conserved protein with zinc knuckle and RING finger domains. We show that mnm is dispensable for patterning of the eye disc, but required in the eye for normal cell proliferation and survival. We also show that mnm null mutant cells exhibit altered cell cycle profiles and contain excess nucleic acid. Moreover, mnm overexpression can induce cells to proliferate and incorporate BrdU. Thus, our data implicate mnm as a regulator of mitotic progression during the proliferative phase of eye development, possibly through the control of nucleic acid metabolism.  相似文献   

15.
Summary A mathematical method for calculating the number of blastoderm cells whose descendants form the various imaginal discs is described. The method differs from available approaches in two respects: (1) It is based only upon the frequency of mosaicism of the adult derivatives of a given imaginal disc and ignores the relative surface area of the two genetically marked cell populations which comprise these derivatives. (2) The method estimates the average number of cells at the blastoderm stage which give rise to a particular imaginal disc and not at the developmental stage at which restriction of the pool of cells which will form this imaginal disc occurs. Despite their methodological differences the estimates obtained from this method and from other approaches are of the same order of magnitude and thus provide further support to the currently available estimates and to the notion that restriction of whole imaginal discs occurs at the blastoderm stage. The proposed method also provides a quantitative approximation of the non-linear relationship that exists between the frequencies of mosaicism of different imaginal discs and the number of cells which comprise these discs.  相似文献   

16.
J Xu  S Xin  W Du 《FEBS letters》2001,508(3):394-398
Chk2 is a major target of ataxia telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR). Germline mutations in Chk2 have been identified in a subset of patients with Li-Fraumeni syndrome, suggesting that Chk2 is a tumor suppressor gene. To investigate the role of Chk2 in multicellular organisms, a Drosophila chk2 (Dmchk2) mutant was generated. Dmchk2 mutants are viable but show defects in maintaining genome stability and are highly sensitive to ionizing radiation. Interestingly, mutating Dmchk2 completely blocks DNA damage-induced apoptosis and partially blocks DNA damage-induced cell cycle arrest. These results indicate that Chk2 protein plays a crucial role in the DNA damage response pathway mediating cell cycle arrest and apoptosis, and that the ATM-Chk2 pathway is likely conserved in Drosophila.  相似文献   

17.
18.
Although the Myc oncogene has long been known to play a role in many human cancers, the mechanisms that mediate its effects in both normal cells and cancer cells are not fully understood. We have initiated a genetic analysis of the Drosophila homolog of the Myc oncoprotein (dMyc), which is encoded by the dm locus. We carried out mosaic analysis to elucidate the functions of dMyc in the germline and somatic cells of the ovary during oogenesis, a process that involves cell proliferation, differentiation and growth. Germline and somatic follicle cells mutant for dm exhibit a profound decrease in their ability to grow and to carry out endoreplication, a modified cell cycle in which DNA replication occurs in the absence of cell division. In contrast to its dramatic effects on growth and endoreplication, dMyc is dispensable for the mitotic division cycles of both germline and somatic components of the ovary. Surprisingly, despite their impaired ability to endoreplicate, dm mutant follicle cells appeared to carry out chorion gene amplification normally. Furthermore, in germline cysts in which the dm mutant cells comprised only a subset of the 16-cell cluster, we observed strictly cell-autonomous growth defects. However, in cases in which the entire germline cyst or the whole follicular epithelium was mutant for dm, the growth of the entire follicle, including the wild-type cells, was delayed. This observation indicates the existence of a signaling mechanism that acts to coordinate the growth rates of the germline and somatic components of the follicle. In summary, dMyc plays an essential role in promoting the rapid growth that must occur in both the germline and the surrounding follicle cells for oogenesis to proceed.  相似文献   

19.
NF-kappaB activity in mammalian cells is regulated through the IkappaB kinase (IKK) complex, consisting of two catalytic subunits (IKKalpha and IKKbeta) and a regulatory subunit (IKKgamma). Targeted deletion of Ikkbeta results in early embryonic lethality, thus complicating the examination of IKKbeta function in adult tissues. Here we describe the role of IKKbeta in B lymphocytes made possible by generation of a mouse strain that expresses a conditional Ikkbeta allele. We find that the loss of IKKbeta results in a dramatic reduction in all peripheral B cell subsets due to associated defects in cell survival. IKKbeta-deficient B cells are also impaired in mitogenic responses to LPS, anti-CD40, and anti-IgM, indicating a general defect in the ability to activate the canonical NF-kappaB signaling pathway. These findings are consistent with a failure to mount effective Ab responses to T cell-dependent and independent Ags. Thus, IKKbeta provides a requisite role in B cell activation and maintenance and thus is a key determinant of humoral immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号