首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary As in many spiralian embryos with unequal cleavage, cleavage inPlatynereis follows an invariant pattern. Preceding each cleavage the cytoplasm is reorganized, allowing the spiral cleavage mode to produce cells with different cytoplasmic composition. The fertilized egg undergoes a dramatic ooplasmic segregation after the completion of the cortical reaction. As a consequence, a plug of clear cytoplasm becomes located at the animal pole. Once the four quadrants of the embryo have been established, the cleavage sequence of the D quadrant differs clearly from that of the other three quadrants. The results presented here suggest that differential distribution of the clear cytoplasm governs this sequence. The first quartet of micromeres, which will form the ectoderm and the cerebral ganglia of the head, is clearly bilaterally symmetrical from the onset of the third cleavage. Dorsoventral polarity and bilateral symmetry in the ectoderm of the trunk is expressed most markedly by the dorsal location of the large 2d cell, whose rapid proliferation is bilaterally symmetrical with respect to the median plane. As a result of this proliferation it comes to fill most of the posttrochal region (ectoderm, three pairs of anlagen for the setal sacs, and the ventral plate which forms the nerve cord). The other micromeres contribute only a minor portion of the ventral ectoderm and are involved in the formation of the stomodaeum. The mesentoblast, 4d, i.e. the stem cell of the primary mesoderm, forms at the sixth cleavage, also in a position on the dorsal mid-line. The daughter cells, which arise from 4d by strictly bilaterally symmetrical cleavage, form the mesodermal germ bands, which lie beneath the ectoderm. The trochoblasts are formed by asynchronously cleaving founder cells, but further cleavages in these cells are synchronous. This suggests that cell-cell interaction is involved in the development of this alleged mosaic embryo.  相似文献   

2.
Summary Early embryogenesis of the nematode Caenorhabditis elegans is characterized by the continuous visibility of a germline and the stepwise separation of all somatic cells from it. Germline and somatic cells exhibit different cleavage patterns. Typical for the germline is a series of stemcell-like, unequal cleavages generating blastomeres, which differ in size, cell cycle periods, and fate. Typical for members of somatic cell lineages during early development are their equal and synchronous cleavages generating cells of similar appearance. Using a laser microbeam various experiments have been carried out to investigate the conditions that lead to the two different types of cleavage. Development of partial embryos demonstrates that the potential for germline-like cleavage is localized in the posterior region of the fertilized egg prior to both the formation of pronuclei and the posterior aggregation of germline-specific granules. Experimental alteration of the cleavage plane can result in a switch from unequal to equal cleavage, with an apparent correlation between the orientation of the mitotic spindle and the type of cleavage. Nuclear transfer experiments indicate that nuclei and centrioles are not involved in the decision as to which type of cleavage will be executed. Cytoplasmic transfer from soma-like to germline-like cleaving cells and vice versa does not alter the cleavage type in the recipient cell. But if separation of germline from soma is delayed after the removal of a centrosome, germline-like cleavage may be completely suppressed, all cells thereafter dividing soma-like.Dedicated to Professor A. Egelhaaf on the occasion of his retirement  相似文献   

3.
We have begun to analyze the early embryogenesis of Romanomermis culicivorax, an insect-parasitic nematode phylogenetically distant to Caenorhabditis elegans. Development of R. culicivorax differs from C. elegans in many aspects including establishment of polarity, formation of embryonic axes and the pattern of asymmetric cleavages. Here, a polarity reversal in the germline takes place already in P1 rather than P2, the dorsal-ventral axis appears to be inverted and gut fate is derived from the AB rather than from the EMS blastomere. So far unique for nematodes is the presence of colored cytoplasm and its segregation into one specific founder cell. Normal development observed after experimentally induced abnormal partitioning of pigment indicates that it is not involved in cell specification. Another typical feature is prominent midbodies (MB). We investigated the role of the MB region in the establishment of asymmetry. After its irradiation the potential for unequal cleavage in somatic and germline cells as well as differential distribution of pigment are lost. This indicates a crucial involvement of this region for spindle orientation, positioning, and cytoplasmic segregation. A scenario is sketched suggesting why and how during evolution the observed differences between R. culicivorax and C. elegans may have evolved.  相似文献   

4.
《The Journal of cell biology》1995,129(4):1071-1080
Cells of the early Caenorhabditis elegans embryo divide in an invariant pattern. Here I show that the division axes of some early cells (EMS and E) are controlled by specific cell-cell contacts (EMS-P2 or E-P3 contact). Altering the orientation of contact between these cells alters the axis along which the mitotic spindle is established, and hence the orientation of cell division. Contact-dependent mitotic spindle orientation appears to work by establishing a site of the type described by Hyman and White (1987. J. Cell Biol. 105:2123-2135) in the cortex of the responding cell: one centrosome moves toward the site of cell-cell contact during centrosome rotation in both intact embryos and reoriented cell pairs. The effect is especially apparent when two donor cells are placed on one side of the responding cell: both centrosomes are "captured," pulling the nucleus to one side of the cell. No centrosome rotation occurs in the absence of cell-cell contact, nor in nocodazole-treated cell pairs. The results suggest that some of the cortical sites described by Hyman and White are established cell autonomously (in P1, P2, and P3), and some are established by cell-cell contact (in EMS and E). Additional evidence presented here suggests that in the EMS cell, contact-dependent spindle orientation ensures a cleavage plane that will partition developmental information, received by induction, to one of EMS's daughter cells.  相似文献   

5.
T Schüpbach 《Cell》1987,49(5):699-707
Mutations in gurken and torpedo cause a ventralization in the follicle cell epithelium during Drosophila oogenesis and in the pattern of the embryo that develops in the resultant egg. Both genes lie midway in an epistatic series between fs(1)K10 and dorsal; the mutations block the dorsalization normally observed in K10 eggs but have no effect on the phenotype of embryos derived from dorsal mothers. Analysis of germ-line mosaics demonstrates that both ovarian and embryonic phenotypes will be produced when either the gurken+ gene is removed from the germ line or torpedo+ is removed from the soma. This shows that the dorsoventral pattern of the Drosophila egg chamber depends on the transfer of spatial information from the germ line to the somatic follicle cells, and from somatic cells to the oocyte.  相似文献   

6.
Development of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis. In an invariant pattern five somatic founder cells and the primordial germ cell are generated within the first hour after the onset of cleavage. Using a laser microbeam for manipulation of individual blastomeres several aspects of early embryogenesis have been investigated, including the expression of cellular polarity, the localization of lineage-specific cleavage potential, the necessity for early cell-cell interaction, and the control of differential cell-cycle timing. The experiments demonstrate the central importance of a correct partitioning of cytoplasmic components during early embryogenesis and suggest a stepwise, binary segregation mechanism associated with the unequal cleavages in the germline.  相似文献   

7.
The locus hunchback (hb) is a member of the gap class of segmentation genes of Drosophila. A number of X-ray-induced deletions locate the hb locus at the chromosomal site 85A3-B1, to the right of the pink locus, which maps in the same interval. A total of 14 EMS and 3 X-ray-induced hb alleles have been studied. Homozygous mutant embryos show deletions of segments in two separate regions. In the six strong alleles, the labium and all three thoracic segments are deleted anteriorly while posteriorly the 8th abdominal segment and adjacent parts of the 7th abdominal segment are lacking. The eight weak alleles show smaller deletions both in the thoracic and posterior abdominal region. In the weakest allele only part of the mesothorax is deleted. Three hb alleles produce a homoeotic transformation: superimposed on a strong or weak deletion phenotype, head or thoracic segments are transformed into abdominal segments, respectively. This suggests that hb might also be involved in the regulation of genes in the Bithorax complex (BX-C). Fate mapping of the normal-appearing segments in strong mutant embryos using the UV-laser beam ablation technique (Lohs-Schardin et al., 1979) shows that these segments arise from the normal blastoderm regions. The mutant phenotype can be recognized soon after the onset of gastrulation in a failure to fully extend the germ band. In 6-hr-old mutant embryos, two clusters of dead cells are observed in the thoracic and posterior abdominal region. These observations indicate region specific requirement of hb gene function. The analysis of germ line chimeras by transplantation of homozygous mutant pole cells shows that hb is already expressed during oogenesis. Homozygous mutant embryos derived from a homozygous mutant germ line have a novel phenotype. The anterior affected region is enlarged, including all three gnathal segments and the anterior three abdominal segments. In addition three abdominal segments with reversed polarity are formed between the remaining head structures and the posterior abdomen. Heterozygous mutant embryos derived from a homozygous mutant germ line develop normally, indicating that maternal gene expression is not required for normal development.  相似文献   

8.
Summary In the early embryo ofCaenorhabditis elegans five somatic cell lineages and a germ cell lineage are established by a series of unequal cleavages in the germline. We suppressed first cleavage by means of cold, mechanical pressure or centrifugation. Thereafter, with the second attempt of the zygote to divide, four blastomeres were generated simultaneously in a tetrapolar cleavage. Cell division pattern, segretation of germline-specific granules, and terminal differentiation of such manipulated embryos were analysed. Instead of six, only from one to five visible cell lineages were established before the germline prematurely aborted from its typical pattern of unequal cleavage. The absence of germline-specific cleavage appears to accompany the abnormal segregation of germline-specific granules. While muscle differentiation was detected even in embryos expressing only one cell lineage, in general, gut differentiation became visible only if a separate gut lineage had been generated. We hypothesize that the potential for differential cleavage is lost in manipulated embryos because a cytoplasmic control factor is diminished as a result of the retarded soma/germline separation. According to this hypothesis, after manipulation, a concentration-dependent decision mechanism leads to: a reduced number of unequal germline cleavages or even none at all, the establishment of fewer distinct cell lineages, and limited cellular differentiation.  相似文献   

9.
The germ cell lineage segregates from the somatic cell lineages in early embryos. Germ cell determination in mice is not regulated by maternally inherited germplasm, but is initiated within the embryo during gastrulation. However, the mechanisms of germ cell specification in mice remain unknown. We located precursors to primordial germ cells (PGCs) within early embryos, and show here that cell-cell interaction among these precursors is required for germ cell specification. We found that the expression of a calcium-dependent cell adhesion molecule, E-cadherin, is restricted to the proximal region of extra-embryonic mesoderm that contains PGC precursors, and that blocking the functions of E-cadherin with an antibody inhibits PGC formation in vitro. These results showed that E-cadherin-mediated cell-cell interaction among cells containing PGC precursors is essential to directing such cells to the germ cell fate.  相似文献   

10.
In ascidian embryos, three successive unequal cleavages occur at the posterior pole, generating a specific cleavage pattern. A recently reported novel structure designated the centrosome-attracting body (CAB) has been suggested to play essential roles in the unequal cleavages attracting centrosomes and the nucleus towards the posterior pole. To examine the morphological features of the CAB, the ultrastructure of the CAB of two ascidian species, Halocynthia roretzi and Ciona intestinalis was observed by transmission electron microscopy. Detailed observations clarified that the electron-dense matrix (EDM) was a CAB-specific component that was commonly observed in the CAB of both species but was not found in other areas of the embryo. Further observations of the CAB in various staged embryos revealed that the ultrastructure was quite stable, with no difference between points of a cell cycle or between each stage from the 8- to 64-cell stage when unequal cleavage occurred. Observations of extracted embryos implied that the EDM was the extraction-resistant component of the CAB and was tightly anchored to the plasma membrane. It has been proposed that the EDM functions as a physical attachment site at the cell cortex for microtubules emanating from centrosomes and provides a scaffold for the centrosome-attracting machinery. Interestingly, the ultrastructure of the CAB resembled germ plasm reported in other animals, raising the possibility that the CAB-containing posterior-most blastomeres are germline precursors.  相似文献   

11.
H Ruohola  K A Bremer  D Baker  J R Swedlow  L Y Jan  Y N Jan 《Cell》1991,66(3):433-449
Oogenesis in Drosophila involves specification of both germ cells and the surrounding somatic follicle cells, as well as the determination of oocyte polarity. We found that two neurogenic genes, Notch and Delta, are required in oogenesis. These genes encode membrane proteins with epidermal growth factor repeats and are essential in the decision of an embryonic ectodermal cell to take on the fate of neuroblast or epidermoblast. In oogenesis, mutation in either gene leads to an excess of posterior follicle cells, a cell fate change reminiscent of the hyperplasia of neuroblasts seen in neurogenic mutant embryos. Furthermore, the Notch mutation in somatic cells causes mislocalization of bicoid in the oocyte. These results suggest that the neurogenic genes Notch and Delta are involved in both follicle cell development and the establishment of anterior-posterior polarity in the oocyte.  相似文献   

12.
Cells in a plant differentiate according to their positions and use cell-cell communication to assess these positions. Similarly, single cells in suspension cultures can develop into somatic embryos, and cell-cell communication is thought to control this process. The monoclonal antibody JIM8 labels an epitope on cells in specific positions in plants. JIM8 also labels certain cells in carrot embryogenic suspension cultures. We have used JIM8 and secondary antibodies coupled to paramagnetic beads to label and immunomagnetically sort single cells in a carrot embryogenic suspension culture into pure populations. Cells in the JIM8(+) population develop into somatic embryos, whereas cells in the JIM8(-) population do not form somatic embryos. However, certain cells in JIM8(+) cultures (state B cells) undergo asymmetric divisions, resulting in daughter cells (state C cells) that do not label with JIM8 and that sort to JIM8(-) cultures. State C cells are competent to form somatic embryos, and we show here that a conditioned growth medium from a culture of JIM8(+) cells allows state C cells in a JIM8(-) culture to go on and develop into somatic embryos. JIM8 labels cells in suspension cultures at the cell wall. Therefore, a cell with a role in cell-cell communication and early cell fate selection can be identified by an epitope in its cell wall.  相似文献   

13.
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.  相似文献   

14.
Drosophila oogenesis is a complex developmental process involving the coordinated differentiation of germ line and somatic cells. Correct execution and timing of cell fate specification and patterning events is achieved during this process by the integration of different cell-cell signalling pathways, eventually leading to the generation of positional information inside the oocyte, that is instrumental for the establishment of embryonic polarity. The large body of data accumulated at both cellular and molecular levels in the last decade clearly demonstrated how Drosophila oogenesis is a genetically tractable system particularly suited for the investigation of key developmental biology questions. Our recent contribution to the field relies on the characterisation of three different mutants named tegamino (teg), hold hup (hup) and tulipano (tip), identifying novel gene functions required during oogenesis. Specifically, teg is implicated in the morphogenesis of the follicular epithelium surrounding the germ line cells in the egg chamber, hup is involved in the establishment of egg chamber polarity and tip in the regulation of the dynamic germ cell chromatin organisation.  相似文献   

15.
Early development in clitellate annelids is characterized by a highly stereotyped sequence of unequal, spiral cleavages. Cell 2d (i.e., the second micromere of the D quadrant) in the oligochaete Tubifex tubifex also undergoes an evolutionarily conserved sequence of cell division to produce four bilateral pairs of ectodermal teloblasts that act as embryonic stem cells. This study was conducted to characterize each of the 15 rounds of cell division that occur in the 2d cell lineage in this clitellate. After its occurrence, cell 2d undergoes three rounds of highly unequal divisions, giving off the first smaller daughter cell toward the posterior right of the larger daughter cell, the second cell toward the posterior left, and the third cell toward the anterior side of the cell; the larger daughter cell that results from the third division (i.e., the great-granddaughter cell of 2d) then divides equally into a bilateral pair of NOPQ proteloblasts. Cell NOPQ on either side of the embryo undergoes 11 rounds of cell division, during which ectoteloblasts N, Q, and O/P are produced in this order. After its appearance, NOPQ undergoes highly unequal divisions twice cutting off the smaller cells toward the anterior end of the embryo and then divides almost equally into ectoteloblast N and proteloblast OPQ. After its appearance, OPQ undergoes highly unequal divisions twice giving off the first smaller cell toward the anterior and the second smaller cell toward the posterior of the embryo and then divides almost equally into ectoteloblast Q and proteloblast OP. Finally, OP undergoes highly unequal division four times after its birth budding off the smaller cells toward the anterior and then cleaves equally into ectoteloblasts O and P. In the unequally dividing cells of the 2d cell lineage, the mitotic apparatus (MA), which forms at the cell's center, moves eccentrically toward the cortical site where the smaller cell will be given off. The moving MA is oriented perpendicular to the surface it approaches, and its peripheral pole becomes closely associated with the cell cortex. In contrast, the MA involved in the equal divisions remains in the cell center throughout mitosis. The key features of the cleavage program in the 2d cell lineage are discussed in light of the present observations. The mechanical aspects of unequal cleavage in the 2d cell lineage and the modes of specification of MA orientation are discussed. A comparison of the cleavage mode in the 2d cell lineage is also performed among six selected clitellate annelid species.  相似文献   

16.
Many kinds of animal embryos exhibit stereotyped cleavage patterns during early embryogenesis. In the ascidian Halocynthia roretzi, cleavage patterns are invariant but they are complicated by successive unequal cleavages that occur in the posterior region. Here we report the essential roles of a novel structure, called the centrosome-attracting body (CAB), which exists in the posterior pole cortex of cleaving embryos, in generating unequal cleavages. By removing and transplanting posterior egg cytoplasm and by treatment with sodium dodecyl sulfate, we demonstrated that loss of the CAB resulted in abolishment of unequal cleavage, while ectopic formation of the CAB caused ectopic unequal cleavages to occur. Experiments with a microtubule inhibitor demonstrated that the centrosome and nucleus were attracted toward the posterior cortex, where the CAB is located, by shortening of microtubule bundles formed between the centrosome and the CAB. Consequently, the mitotic apparatus was positioned asymmetrically, resulting in unequal cleavage. Immunohistochemistry provided evidence that a microtubule motor protein, a kinesin or kinesin-like molecule, may be associated with the CAB. Formation of the CAB during the early cleavage stage was resistant to treatment with the microtubule inhibitor. In contrast, the integrity of the CAB was lost upon treatment with a microfilament inhibitor. We propose that the CAB plays key roles in the orientation and positioning of cleavage planes during unequal cell division.  相似文献   

17.
Ascidian embryos sequester a specific cytoplasm, called the postplasm, at the posterior pole, where many maternal RNAs and proteins accumulate. Although the postplasm is thought to act as the germ plasm, it is also highly enriched in several factors essential for somatic cell development, and how the postplasm components regulate both germ and somatic cell differentiation remains elusive. Using a vasa homolog, CiVH, and other postplasmic components as markers, we found that the postplasm-containing blastomeres, the B7.6 cells, undergo an asymmetric cell division during gastrulation to produce two distinct daughter cells: B8.11 and B8.12. Most of the postplasmic components segregate only into the B8.11 cells, which never coalesce into the gonad. By contrast, the maternal CiVH RNA and protein are specifically distributed into the B8.12 cells, which divide further and are incorporated into the gonad in juveniles. In the B8.12 cells, CiVH production is upregulated from the maternal RNA source, resulting in the formation of perinuclear CiVH granules, which may be the nuage, a hallmark of germ cells in many animal species. We propose that the redistribution of specific maternal molecules into the B8.12 cells is essential for germ-cell specification in ascidians.  相似文献   

18.
The CCCH finger protein PIE-1 is a regulator of germ cell fate that segregates with the germ lineage in early embryos. At each asymmetric division, PIE-1 is inherited preferentially by the germline daughter and is excluded from the somatic daughter. We show that this asymmetry is regulated at the protein level by two complementary mechanisms. The first acts before cell division to enrich PIE-1 in the cytoplasm destined for the germline daughter. The second acts after cell division to eliminate any PIE-1 left in the somatic daughter. The latter mechanism depends on PIE-1's first CCCH finger (ZF1), which targets PIE-1 for degradation in somatic blastomeres. ZF1s in two other germline proteins, POS-1 and MEX-1, are also degraded in somatic blastomeres, suggesting that localized degradation also acts on these proteins to exclude them from somatic lineages.  相似文献   

19.
Pole cell formation in embryos of the parthenogenetic midge, Smittia sp., can be delayed or inhibited by irradiation of the posterior egg pole with ultraviolet light (uv). This leaves the schedule of nuclear divisions and chromosome eliminations virtually unaffected. However, uv irradition delays the precocious migration to the posterior pole of one nucleus, which normally becomes included in the first pole cell. This effect is photoreversible, i.e., mitigated by application of blue light after uv. Photoreversibility indicates that a nucleic acid component is involved as an effective target. During normal development of Smittia a number of chromosomes are eliminated during mitosis V, not only from somatic nuclei but also in the germ line. In the latter, this mitosis takes place during the first gonial division in the larva. After uv irradiation, the first pole cell nucleus has undergone supernumerary mitoses before pole cell formation and, as a result, is driven into mitosis V precociously as the pole cell divides. This is frequently associated with chromosome elimination from pole cells, which in turn is correlated with subsequent disappearance of already formed pole cells. Adults derived from embryos without pole cells do not form ovaries. Pole cell formation, pole cell preservation, and ovary development are separately inhibited by uv, and inhibition of each step is photoreversible. The results are discussed in the context of germ cell determination, protection against chromosome elimination, and the role of chromosomes limited to the germ line.  相似文献   

20.
Gap junctions coordinate processes ranging from muscle contraction to ovarian follicle development. Here we show that the gap junction protein Zero population growth (Zpg) is required for germ cell differentiation in the Drosophila ovary. In the absence of Zpg the stem cell daughter destined to differentiate dies. The zpg phenotype is novel, and we used this phenotype to genetically dissect the process of stem cell maintenance and differentiation. Our findings suggest that germ line stem cells differentiate upon losing contact with their niche, that gap junction mediated cell-cell interactions are required for germ cell differentiation, and that in Drosophila germ line stem cell differentiation to a cystoblast is gradual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号