首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In vitro culturing of normal human seminiferous epithelium remains largely unexplored. To study normal human spermatogenesis in vitro, we used a micromethod for the purification and culture of Sertoli cells, spermatogonia A, spermatocytes, and early round spermatids. Cytological quantitative data for Sertoli and premeiotic germ cell cocultures isolated from normal testicular biopsies demonstrated that cells were able to proliferate (4%), complete meiosis (6.7%), and differentiate into late round (54%), elongating (49%), and elongated (17%) spermatids at similar in vivo time delays (up to 16 days) in response to FSH + testosterone stimulation. Cells maintained normal meiotic segregation, chromosome complements, and specific gene expression profiles. Follicle-stimulating hormone + testosterone stimulated spermatogonia proliferation and Sertoli cell survival. Follicle-stimulating hormone and especially FSH + testosterone increased diploid germ cell survival during the first week, whereas only FSH + testosterone was able to inhibit cell death during the second week of culture. Follicle-stimulating hormone and especially FSH + testosterone also stimulated meiosis resumption, although this was restricted to late pachytene and secondary spermatocytes. In contrast, spermiogenesis was only stimulated by FSH + testosterone. Expression studies showed that apoptosis was induced in the nucleus of diploid cells, and in nuclear and cytoplasmic compartments of spermatids, mainly triggered by the Fas pathway. Although junctional complexes between Sertoli and premeiotic germ cells were partially reacquired, the same did not apply to spermatids, suggesting that FSH potentiated by testosterone was unable to render Sertoli cells competent to bind round spermatids.  相似文献   

3.
Spetex-1 has recently been isolated by differential display and screening of cDNA library. It encodes a protein of 556 amino acid residues possessing coiled-coil motifs. In the rat seminiferous tubules (ST), Spetex-1 was expressed in the cytoplasm of elongating spermatids. To examine the subcellular distribution of Spetex-1 in mature spermatozoa, we performed biochemical and immunocytochemical approaches. We found that Spetex-1 that was synthesized in the cytoplasm of elongating spermatids was subsequently integrated as a middle piece component into spermatozoa during spermiogenesis. After integration, the majority of Spetex-1 in spermatozoa could be extracted by 6M urea under reduced condition but not released by the treatment of 1% Triton X-100. Immunoelectron microscopy demonstrated that Spetex-1 seemed to locate at the inner side of outer dense fibers (ODFs) in the middle piece or the narrow space between ODFs and axoneme. Spetex-1 might be involved in the stability of the structural complexity comprising axoneme and ODFs in the middle piece of sperm flagellum.  相似文献   

4.
5.
R. Jurečić 《Genetica》1988,76(1):27-31
An attempt was made to determine the number of spermatozoa per bundle in a scarabaeoid species Gnorimus nobilis both through the analysis of the premeiotic cytology of germ line cells and by counting the spermatids within a spermiocyst at the beginning of the process of spermiogenesis. The obtained results, taken together, indicate that definitive spermatogonia go through a series of 6 synchronous mitotic divisions before entering meiosis as primary spermatocytes, which in turn produce 256 (28) spermatozoa per bundle after completion of meiosis and spermiogenesis. The obtained data are compared with similar ones for other beetle species belonging to the family Scarabaeidae and the suborder Coleoptera-Polyphaga, respectively. Also, some phylogenetic implications of these data are briefly discussed.  相似文献   

6.
Lis1 protein is the non-catalytic component of platelet-activating factor acetylhydrolase 1b (PAF-AH 1B) and associated with microtubular structures. Hemizygous mutations of the LIS1 gene cause type I lissencephaly, a brain abnormality with developmental defects of neuronal migration. Lis1 is also expressed in testis, but its function there has not been determined. We have generated a mouse mutant (LIS1GT/GT) by gene trap integration leading to selective disruption of a Lis1 splicing variant in testis. Homozygous mutant males are infertile with no other apparent phenotype. We demonstrate that Lis1 is predominantly expressed in spermatids, and spermiogenesis is blocked when Lis1 is absent. Mutant spermatids fail to form correct acrosomes and nuclei appear distorted in size and shape. The tissue architecture in mutant testis appears severely disturbed displaying collapsed seminiferous tubules, mislocated germ cells, and increased apoptosis. These results provide evidence for an essential and hitherto uncharacterized role of the Lis1 protein in spermatogenesis, particularly in the differentiation of spermatids into spermatozoa.  相似文献   

7.
Semicystic, a rare type of spermatogenesis, was detected in the characid Hemigrammus marginatus and characterized by cysts hatching during the spermatid phase and maturation of the spermatozoa being completed at the lumen of the anastomosed seminiferous tubules. Primary spermatogonia, or type A, are distributed along the entire length of the seminiferous tubules, in an unrestricted spermatogonial pattern. H. marginatus spermiogenesis is included in type I, mainly characterized by presence of nucleus rotation. During this process, a vesicle resembling the acrosomal vesicle is visualized at the anterior region close to the nucleus of the early spermatids, however this structure did not remain in the spermatozoa. In Hmarginatus, the spermatozoon is uniflagellated, primitive, type I aquasperm, with a rounded head, a short midpiece and a long flagellum with the axoneme in a 9 + 2 microtubules arrangement and no lateral fins. Residual spermatozoa are reabsorbed by Sertoli cells. Unusual biflagellate spermatozoa with three long cytoplasmatic projections originating in the midpiece are rarely observed and have not been registered in other characiforms. Ultrastructural characteristics of the spermatogenesis and spermatozoa observed in the present work provide important subsidies to systematic and phylogeny studies of Characidae fishes included in Incertae sedis groups, such as H. marginatus.  相似文献   

8.
A histological study was undertaken to clarify seasonal changes in the spermatogenic epithelium of Japanese macaques. Testicular tissue samples were excised by biopsies from five adult laboratory-maintained males in mating and non-mating seasons. The samples were fixed with Bouin's solution, embedded in paraffin, and stained with PAS and hematoxylin. Microscopic observations on cross-sections of seminiferous tubules revealed that the seminiferous epithelium in the mating season was thicker than in the non-mating season. PAS-stained granules were found in some of the dark A-type spermatogonia, which significantly increased in the non-mating season. Spermatids of the steps preceding the appearance of the acrosomic cap in stages I to III were observed significantly more often than those in the step coinciding with the formation of the acrosomic cap in stage IV. In stage I, the ratio of mature spermatids or spermatozoa to immature spermatids in the mating season was higher than that in the non-mating season. These findings suggest that spermiogenesis, as well as spermatocytogenesis, is inhibited in the non-mating season.  相似文献   

9.
In the course of spermiogenesis in the mouse, spermatid cytoplasm contains numerous membrane pits, vesicles and membranous tubules which are frequently anastomosed. Pale and dense multivesicular bodies (MVB) and secondary lysosome-like structures are also present in the cytoplasm. In order to study the pathway of non-specific adsorptive endocytosis in spermatids, cationic ferritin (CF) was directly microinjected into the lumen of seminiferous tubules, and added to germinal cell culture. Tissue and cultures were fixed at various time intervals after injection. Two-5 hr after microinjection of tracer, CF was found simultaneously in vesicles, tubules, MVB and in lysosome-like bodies present in spermatids at all steps of spermiogenesis. Various membranous components of the Golgi medulla, and the innermost transsaccule of the Golgi cortex were labelled simultaneously. In primary cultures of spermatids, the vesicles contained the marker 5 min after its deposition; 10 min after deposition, CF was evident in tubules; at 30 min, CF was present in pale MVB; at 1 hr, the dense MVB and lysosome-like bodies were labelled. Finally, at 2 hr 30 min, vesicles and tubules of the Golgi medulla contained CF grains. Apparently spermatids are very active cells in the process of adsorptive endocytosis throughout spermiogenesis. Endocytosis in spermatids is probably one of the mechanisms involved in the uptake of material used to build up spermatozoa components. The strong labelling of the Golgi region probably point to its role in recycling endocytosed membranes.  相似文献   

10.
Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16(Ink4a) activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16(Ink4a)-mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16(Ink4a)-mediated senescence.  相似文献   

11.
Spermiogenesis in Plagioscion squamosissimus occurs in cysts. It involves a gradual differentiation process of spermatids that is characterized mainly by chromatin compaction in the nucleus and formation of the flagellum, resulting in the spermatozoa, the smallest germ cells. At the end of spermiogenesis, the cysts open and release the newly formed spermatozoa into the lumen of the seminiferous tubules. The spermatozoa do not have an acrosome and are divided into head, midpiece, and tail or flagellum. The spermatozoa of P. squamosissimus are of perciform type with the flagellum parallel to the nucleus and the centrioles located outside the nuclear notch.  相似文献   

12.
Spermiogenesis in Plagioscion squamosissimus occurs in cysts. It involves a gradual differentiation process of spermatids that is characterized mainly by chromatin compaction in the nucleus and formation of the flagellum, resulting in the spermatozoa, the smallest germ cells. At the end of spermiogenesis, the cysts open and release the newly formed spermatozoa into the lumen of the seminiferous tubules. The spermatozoa do not have an acrosome and are divided into head, midpiece, and tail or flagellum. The spermatozoa of P. squamosissimus are of perciform type with the flagellum parallel to the nucleus and the centrioles located outside the nuclear notch.  相似文献   

13.
Spermatozoa from the testis and various regions along the epididymis of the rat were collected by micropuncture and their motility after dilution was estimated over a 15-min period by using a Quantimet image analyser. The motility of sermatozoa from the rete testis and seminiferous tubules was too low to be measured. The estimate of motility of spermatozoa from the proximal caput epididymidis was much lower than that of spermatozoa from the other regions. Spermatozoa from the distal part of the caput showed sustained motility for 15 min, whereas those from the caudal region and ductus deferens, although active initially, became less active during this period.  相似文献   

14.
True endomitosis in the anther tapetum of the liliaceous plant Eremurus is described. The nuclear membrane does not disappear, but during metaphase the chromosomes are condensed, often considerably more than in normal mitosis. When the pollen mother cells (PMCs) go through the last premeiotic mitosis, the tapetal cells have one diploid nucleus which divides while the cell remains undivided. The two diploid nuclei may undergo an endomitosis and the resulting tetraploid nuclei a second endomitosis. An alternative pathway is an ordinary mitosis—again without cell division—instead of one of the endomitotic cycles. The cytological picture in the tapetum is further complicated by restitution in anaphase and fusion of metaphase and anaphase groups during mitosis, processes which could give rise to cells with one, two, or three nuclei, instead of the expected two or four. No sign of the so-called “inhibited” mitosis is seen in these tapetal cells. When the PMCs are in leptotene-zygotene, very few tapetal nuclei are in endomitosis. When the PMCs have reached diplotene, almost 100% of cells which are not in interphase show an endomitotic stage.  相似文献   

15.
Factors affecting spermatogenesis in the stallion   总被引:1,自引:0,他引:1  
Spermatogenesis is a process of division and differentiation by which spermatozoa are produced in seminiferous tubules. Seminiferous tubules are composed of somatic cells (myoid cells and Sertoli cells) and germ cells (spermatogonia, spermatocytes, and spermatids). Activities of these three germ cells divide spermatogenesis into spermatocytogenesis, meiosis, and spermiogenesis, respectively. Spermatocytogenesis involves mitotic cell division to increase the yield of spermatogenesis and to produce stem cells and primary spermatocytes. Meiosis involves duplication and exchange of genetic material and two cell divisions that reduce the chromosome number to haploid and yield four spermatids. Spermiogenesis is the differentiation without division of spherical spermatids into mature spermatids which are released from the luminal free surface as spermatozoa. The spermatogenic cycle (12.2 days in the horse) is superimposed on the three major divisions of spermatogenesis which takes 57 days. Spermatogenesis and germ cell degeneration can be quantified from numbers of germ cells in various steps of development throughout spermatogenesis, and quantitative measures are related to number of spermatozoa in the ejaculate. Germ cell degeneration occurs throughout spermatogenesis; however, the greatest seasonal impact on horses occurs during spermatocytogenesis. Daily spermatozoan production is related to the amount of germ cell degeneration, pubertal development, season of the year, and aging. Number of Sertoli cells and amount of smooth endoplasmic reticulum of Leydig cells and Leydig cell number are related to spermatozoan production. Seminiferous epithelium is sensitive to elevated temperature, dietary deficiencies, androgenic drugs (anabolic steroids), metals (cadmium and lead), x-ray exposure, dioxin, alcohol, and infectious diseases. However, these different factors may elicit the same temporary or permanent response in that degenerating germ cells become more common, multinucleate giant germ cells form by coalescence of spermatocytes or spermatids, the ratio of germ cells to Sertoli cells is reduced, and spermatozoan production is adversely affected. In short, spermatogenesis involves both mitotic and meiotic cell divisions and an unsurpassed example of cell differentiation in the production of the spermatozoon. Several extrinsic factors can influence spermatogenesis to cause a similar degenerative response of the seminiferous epithelium and reduce fertility of stallions.  相似文献   

16.
17.
The sex-determining region of Chr Y (Sry) gene is sufficient to induce testis formation and the subsequent male development of internal and external genitalia in chromosomally female mice and humans. In XX sex-reversed males, such as XX/Sry-transgenic (XX/Sry) mice, however, testicular germ cells always disappear soon after birth because of germ cell-autonomous defects. Therefore, it remains unclear whether or not Sry alone is sufficient to induce a fully functional testicular soma capable of supporting complete spermatogenesis in the XX body. Here, we demonstrate that the testicular somatic environment of XX/Sry males is defective in supporting the later phases of spermatogenesis. Spermatogonial transplantation analyses using XX/Sry male mice revealed that donor XY spermatogonia are capable of proliferating, of entering meiosis and of differentiating to the round-spermatid stage. XY-donor-derived round spermatids, however, were frequently detached from the XX/Sry seminiferous epithelia and underwent cell death, resulting in severe deficiency of elongated spermatid stages. By contrast, immature XY seminiferous tubule segments transplanted under XX/Sry testis capsules clearly displayed proper differentiation into elongated spermatids in the transplanted XY-donor tubules. Microarray analysis of seminiferous tubules isolated from XX/Sry testes confirmed the missing expression of several Y-linked genes and the alterations in the expression profile of genes associated with spermiogenesis. Therefore, our findings indicate dysfunction of the somatic tubule components, probably Sertoli cells, of XX/Sry testes, highlighting the idea that Sry alone is insufficient to induce a fully functional Sertoli cell in XX mice.  相似文献   

18.
Indirect immunofluorescence staining with human anti-kinetochore antibodies was used to study the position of centromeres during vertebrate spermiogenesis. Many species of Amphibia have a low chromosome number and very large spermatids and spermatozoa. The number of kinetochore dots correlates exactly with the haploid chromosome number. This implies that kinetochore duplication occurs in the interval between meiosis I and meiosis II. The nonhomologous centromeres are arranged in tandem during the entire course of spermiogenesis and in mature spermatozoa. A higher order centromere arrangement was found in spermiogenic cells of Anura and Urodela. In mammals, immunofluorescence analysis is complicated by the extreme condensation of chromatin during spermiogenesis and the high chromosome numbers. Nevertheless, centromere-centromere associations were observed in mammalian round spermatids and sporadically in testicular spermatozoa. This indicates that pair-wise association of centromeres is a universal principle of centromere arrangement at the postmeiotic stage.  相似文献   

19.
Spermatogenesis is a developmental process that occurs in several phases and is regulated by a large number of gene products. An insertional transgenic mouse mutant (termed kisimo mouse) has been isolated that results in abnormal germ-cell development, showing abnormal elongated spermatids in the lumina of seminiferous tubules. We cloned the disrupted locus of kisimo and identified a novel testis-specific gene, THEG, which is specifically expressed in spermatids and was disrupted in the transgenic mouse. The yeast two-hybrid screening method revealed that THEG protein strongly interacts with chaperonin containing t-complex polypeptide-1epsilon, suggesting that THEG protein functions as a regulatory factor in protein assembly. Our findings indicate that the kisimo locus is essential for the maintenance of spermiogenesis and that a gene expression disorder may be involved in male infertility.  相似文献   

20.
The spermatozoon of Ophidion sp. possesses an elongated nucleus 8 μm long, a short midpiece (0,6 μm), and a long flagellum (100 μm). The flagellar membrane extends in the form of two diametrically opposed sidefins. Evolving spermatids and spermatozoa are found in the lumen of the seminiferous tubes. The sections of flagella show filamentary and tubular elements disposed parallel to the axoneme microtubules. We have divided the flagella into three types. In type 1 the tip of the sidefins contains 20 to 30 filaments 5 run in diameter and between these and the axoneme 20 to 30 tubular elements 15 to 20 nm in diameter. Type 2 possesses a dense cytoplasm and a few tubular elements 10 nm in diameter disposed at the tip of the sidefins. Type 3 contains a cytoplasm which is not dense and in which we found polysaccharides and 1 to 8 tubular elements forming a palisade which lines the plasma membrane at the tip of the sidefins. We interpret these three types as three successive stages in the organization of the flagellum during spermiogenesis. Type 3 corresponds to the spermatic flagellum. These 10-nm-diameter tubules do not have the same chemical composition as the microtubules. Elements of the cytoskeleton serve as a support for the sidefins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号