首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid ‘burst-forming units’(BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

2.
A possible regulatory action of phagocytic cells on erythropoiesis was investigated by infusion of inert polystyrene latex particles (LAT). LAT appeared to induce changes in the femoral content of erythroid progenitor cells. These changes were most pronounced in primitive erythroid progenitor cells (BFUe) and appeared to be gradually damped in more differentiated populations (CFUe and erythroblasts). LAT did not influence granulocyte/macrophage progenitor cells (CFUc). The effects of LAT could not be attributed to changes in the systemic erythropoietin (EP) concentration. Administration of dexamethason nullified the effect of low doses of LAT, suggesting that phagocytosis of the particles is essential to the observed effects. Erythroid burst formation was previously found to be dependent on a bone marrow associated activity, termed BFA (burst feeder activity). BFA acts as an in vitro inducer of EP-responsiveness in BFUe. In this study it was found that LAT-induced changes in femoral erythroid progenitor cell content were characteristically preceded by corresponding changes in BFA. It was concluded that BFA-associated cells probably play a role in vivo in the early differentiation of erythroid progenitor cells. The present data are interpreted as direct in vivo evidence supporting a two-step regulatory model operating in erythropoiesis and provide evidence that phagocytic cells are a component of the erythroid haemopoietic inductive micro-environment.  相似文献   

3.
Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid 'burst-forming units' (BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP.  相似文献   

4.
This study was designed to determine the stage in haemopoietic cell differentiation from multipotential stem cells at which erythropoietin becomes physiologically important. The responses of haemopoietic precursor cells were monitored in the bone marrow of mice under conditions of high (after bleeding) and low (after hypertransfusion) ambient erythropoietin levels. The number of relatively mature erythroid precursors (CFU-E), detected by erythroid colony formation after 2 days of culture, increased three-fold in marrow by the fourth day after bleeding, and decreased three-fold after hypertransfusion. Assessed by sensitivity to killing by a brief exposure to tritiated thymidine (3H-TdR) in vitro, the proliferative activity of CFU-E was high (75% kill) in untreated and bled animals, and was slightly lower (60% kill) after hypertransfusion. The responses of more primitive erythroid progenitors (BFU-E), detected by erythroid colony formation after 10 days in culture, presented a contrasting pattern. After hypertransfusion they increased slightly, while little change was noted until the fourth day after bleeding, when they decreased in the marrow. The same response pattern was observed for the progenitors (CFU-C) detected by granulocyte/macrophage colony formation in culture. The sensitivity of BFU-E to 3H-TdR was normally 30%, and neither increased after bleeding nor decreased after hypertransfusion. However, in regenerating marrow the 3H-TdR sensitivity of BFU-E increased to 63%, and this increase was not affected by hypertransfusion. These results are interpreted as indicating (1) that physiological levels of erythropoietin do not influence the decision by multipotential haemopoietic stem cells to differentiate along the erythroid pathway as opposed to the granulocyte/macrophage pathway; (2) that early erythroid-committed progenitors themselves do not respond to these levels of erythropoietin, but rather are subject to regulation by erythropoietin-independent mechanisms; and (3) that physiological regulation by erythropoietin commences in cells at a stage of maturation intermediate between BFU-E and CFU-E.  相似文献   

5.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

6.
A monoclonal antibody with specificity for murine transferrin receptor was conjugated with the toxic A subunit of ricin. The dose range, specificity, and kinetics of inhibition of protein synthesis of the conjugate were determined on the murine T-lymphoma cell line, BW5147. When toxin was present throughout the period of culture, in vitro myeloid (CFUc) and erythroid (CFUe and BFUe) bone marrow colonies were inhibited by doses of conjugate comparable to those that inhibit protein synthesis in murine cell lines (IC50 of 5 X 10(-11)M). Bone marrow exposed briefly (30 min to 6 h) to anti-transferrin receptor antibody-ricin A conjugate was assayed for myeloid (CFUc) and erythroid (CFUe and BFUe) progenitors in vitro and for in vivo spleen colony formation (CFUs). Only CFUe were depleted by this pulse exposure, consistent with the higher frequency of proliferating cells and transferrin receptor expression in the CFUe population relative to other progenitors.  相似文献   

7.
Summary The erythroid-potentiating effects of a protein fraction produced by 20-day rat fetal liver-adhering cells are studied. Partial purification by gel filtration gave an active fraction (apparent molecular weight = 29×103) that significantly increased the erythroid colony counts (CFUe and late BFUe) in cultures of liver cell fractions depleted of adhering cells at both limiting and saturating concentration of recombinant human erythropoietin. The sensitivity of CFUe and BFUe to erythropoietin was increased by the activator.  相似文献   

8.
Abstract. Femoral mouse bone marrow cells were separated into axial and marginal fractions, in order to investigate the relative concentration of erythroid progenitor cells (BFUe and CFUe) with respect to their location across the diameter of the femur. Two areas of high incidence of early progenitor cells (BFUe) were identified: one lying near the bone surface with a peak at about 410 μ m radial distance from the axis of the bone; the other nearer the centre of the bone with a peak at about 270 μ m. The more immature BFUe were found in higher proportion in the marginal peak. In contrast, CFUe, apart from very low concentration values in the vicinity of the bone surface, demonstrated a fairly uniform distribution throughout the marrow. The present results indicate that the distribution of erythroid progenitor cells within the bone marrow is not random. The haemopoietic tissue seems to exhibit a well-defined structure that may be relevant in regulating proliferation and differentiation processes.  相似文献   

9.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3·36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10–11 M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

10.
In culture medium containing albumin, iron saturated transferrin, phospholipids, cholesterol and erythropoietin, BFUe growth requires foetal Calf serum. Without serum the BFUe development is advantageously restored by the addition of hemin associated with spleen conditioned medium. In erythropoietin supplemented serum-free medium the growth of primitive erythroid precursor cells is closely dependent on growth factor supply found in spleen conditioned medium. Using this medium allows us to clearly distinguish between the respective effects of erythropoietin and of BPA on erythroid progenitor cells.  相似文献   

11.
Altered haematopoiesis in the femoral marrow was observed in mice bearing the Lewis lung carcinoma (LLca). During tumour growth, a marked reduction was observed in the myeloperoxidase-positive cells (granulocytes) of the marrow 7 days after inoculation of the LLca tumour reaching a nadir (17% of control) by day 28. Accompanying this suppression of mature white cells was a gradual expansion of the CFUc-GM compartment followed by an increase in the number of femoral CFUs. Humoral-stimulating activity (HSA) increased through day 14 in the serum of these animals; then returned to control levels by day 28. During this same interval, the more primitive erythroid progenitor (BFUe) compartment expanded to 168% of control, while the more differentiated (CFUe) compartment was reduced (45% of control at day 28). Reductions in both 59Fe-incorporation and erythroblasts/femur confirmed the suppression of erythroid differentiation in marrow during tumour growth. Similar results were observed following the daily injection (188 mg equivalent dose; q 24 hr X 10) of the supernatant prepared from LLca tissue. Marked differences were observed between the response of the spleen and the marrow to the supernatant. The data suggest that the growth of the LLca tumour results in a dissociation of the normal continuity of haematopoietic steady-state differentiation in the marrow of tumour-bearing animals.  相似文献   

12.
Current novel therapeutic agents for the treatment of sickle cell anaemia (SCA) focus on increasing foetal haemoglobin (HbF) levels in SCA patients. Unfortunately, the only approved HbF‐inducing agent, hydroxyurea, has long‐term unpredictable side effects. Studies have shown the potential of plant compounds to modulate HbF synthesis in primary erythroid progenitor stem cells. We isolated a novel HbF‐inducing Terminalia catappa distilled water active fraction (TCDWF) from Terminalia catappa leaves that induced the commitment of erythroid progenitor stem cells to the erythroid lineage and relatively higher HbF synthesis of 9.2‐ and 6.8‐fold increases in both erythropoietin (EPO)‐independent and EPO‐dependent progenitor stem cells respectively. TCDWF was differentially cytotoxic to EPO‐dependent and EPO‐independent erythroid progenitor stem cell cultures as revealed by lactate dehydrogenase release from the cells. TCDWF demonstrated a protective effect on EPO‐dependent and not EPO‐independent progenitor cells. TCDWF induced a modest increase in caspase 3 activity in EPO‐independent erythroid progenitor stem cell cultures compared with a significantly higher (P?0.05) caspase 3 activity in EPO‐dependent ones. The results demonstrate that TCDWF may hold promising HbF‐inducing compounds, which work synergistically, and suggest a dual modulatory effect on erythropoiesis inherent in this active fraction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A study of the kinetics of cellular proliferation, in the morphologically unrecognizable haemopoietic progenitor cell compartment, as a function of injected CFU-S dose has been carried out in the spleens of lethally X-irradiated mice using 3H-TdR labelling. Amplification in this proliferating cell compartment was observed to decline as CFU-S dose increased. The number of divisions in the differentiated line arising from CFU-S up to the first appearance of recognizable erythroid precursors were calculated to be 9.2, 12.5, 15 and 17 for the 2, 0.35, 0.05 and 0.007 femur equivalent doses respectively. The growth of cell populations arising from CFU-S was biphasic, with a rapid initial phase having a doubling time of about 6.3 hr, and a slow phase of doubling time around 1 day. Analysis of the rapid phase by the FLM method gave a cycle time of 5.6 hr. Recognizable labelled erythroid precursors were detected at the same time as, or just after, the change in slope of the growth curve. Significant numbers of proliferating (labelled) granulocytes only appeared in the spleens of animals receiving the higher marrow doses (2 and 0.35 femur). The erythroid to granulocyte ratio was also a decreasing function of marrow dose.  相似文献   

14.
Heme synthesis by erythroid progenitor cells is maintained by erythropoietin (EP), insulin-like growth factor-I (IGF-I), and stem cell factor (SCF), and without these growth factors apoptosis (programmed cell death) occurs. To clarify the possible interaction between heme synthesis and programmed cell death of human erythroid progenitor cells, the effect of specific inhibition of heme synthesis on apoptosis of highly purified human erythroid colony forming cells (ECFC) was studied. When the amount of uncleaved DNA was determined as a measure of apoptosis, the heme synthesis inhibitors, succinylacetone (SA) (0.1 mmol/L) or isonicotinic acid hydrazide (INH) (10 mmol/L), significantly decreased the amount of uncleaved DNA (P < 0.01) in the presence of erythropoietin (EP). Addition of recombinant heavy-chain ferritin (rHF) (10 nmol/L), or deprivation of transferrin from the culture medium, which decreased heme synthesis, also reduced the amount of uncleaved DNA (P < 0.01). The production of apoptosis by diverse inhibitors of heme synthesis was in each case reversed by the addition of hemin (0.1 mmol/L) and did not occur with HL-60 cells. When the colony-forming capacity of ECFC was determined by plasma clot assay, SA, INH, or rHF reduced the number of CFU-E (P < 0.01), and the effect of SA was reversed by hemin. The addition of SA did not alter the c-myc response of ECFC to EP. These data indicate that inhibition of heme synthesis induces apoptosis of human erythroid progenitor cells, in a manner independent of an early c-myc response, and suggest that the presence of apoptosis in ineffective erythropoiesis may be secondary to impaired heme synthesis. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. the second slow phase is observed only when low numbers of bone marrow cells (2.5 × 104) are transplanted. the decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 × 106 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum.  相似文献   

16.
Saline incubation extracts of mature erythrocytes were assayed in vivo by a variety of techniques in order to study their ability to modify the proliferation of maturing erythroid cells. Using comparable extracts from granulocytes and lymphocytes, the specificity of the effect of the red cell extract for erythroid cells was confirmed by measurement of autoradiographic labelling indices, radio-iron incorporation and spleen colony growth. The erythroid cells were found to be very sensitive to the effects of the extract, as little as 10 μg per mouse producing a maximum effect on iron incorporation. It was found that the extract does not block erythroid cell proliferation completely but simply lengthens the cell cycle, mainly by increasing the G1 phase of the cycle. There was no effect on the committed erythroid precursor cells. The in vivo activity, specificity and non-toxicity to the cells, together with the cells' sensitivity to red cell extract suggest, therefore, that this inhibitor may play a physiological role in the control of red cell production.  相似文献   

17.
Exposure to 950 rads 60Co radiation has been reported to cause long-lasting damage to the hematopoietic stroma (HS), although the size of the CFUs population recovers to pre-irradiation levels. In these studies HS damage was detected only after subcutaneously implanting the femurs of the irradiated mice into syngeneic hosts. To exclude the possibility that what was considered to be HS damage was merely caused by artifacts due to the process of implantation in a new host, we compared the rate of regeneration of CFUs in mice which had recovered from 950 rads prior to receiving 300 rads 60Co radiation (950 + 300 rads group) with that of mice which received only 300 rads (0 + 300 rads group). The CFUs population in the 950 + 300 rads group grew exponentially for 2 weeks at a rate which did not differ significantly from that of CFUs in the 0 + 300 rads group. However, the rate of CFUs growth reached a plateau before full recovery was achieved in contrast to that in the 0 + 300 rads mice. We therefore conclude that the incomplete regeneration of CFUs in the marrows of 950 + 300 rads mice was most likely caused by X-irradiation-induced damage to the HS rather than damage to the inherent repopulating potential of the CFUs per se.  相似文献   

18.
Erythropoiesis in vitro was studied with practically pure erythroid progenitor cells: CFU-E (colony-forming-units-erythroid). the isolation of CFU-e from spleens of thiamphenicol pretreated anaemic mice with the combined methods of centrifugal elutriation and Percoll density gradient centrifugation was monitored by flow cytometry. the ultimate CFU-e preparation with a density of 1.070 g/ml contained a high percentage of cells in the S phase of the cell cycle (80%). CFU-e occasionally found at a lower density of 1.065 g/ml were predominantly in the G2, + M and G1 phases. When CFU-e were cultured, the number of cells in the distinctive phases of the cell cycle changed periodically, so the cells were partly synchronized. Four periods up to 27 hr were observed by flow cytometrical screening of the cultured cells at hourly intervals. Cell-cycle times between 6 and 7 hr were found for all erythroid cell divisions. This was in agreement with results obtained from colony growth curves. Without the addition of erythropoietin cells start to degenerate after the second cell division. This experimental approach can be used for the cell kinetic modelling of erythropoiesis.  相似文献   

19.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3.36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10(-11) M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

20.
Induced pluripotent stem (iPS) cells provide powerful tools for studying disease mechanisms and developing therapies for diseases. The 8p11 myeloproliferative syndrome (EMS) is an aggressive chronic myeloproliferative disorder (MPD) that is caused by constitutive activation of fibroblast growth factor receptor 1. EMS is rare and, consequently, effective treatment for this disease has not been established. Here, iPS cells were generated from an EMS patient (EMS-iPS cells) to assist the development of effective therapies for EMS. When iPS cells were co-cultured with murine embryonic stromal cells, EMS-iPS cells produced more hematopoietic progenitor and hematopoietic cells, and CD34+ cells derived from EMS-iPS cells exhibited 3.2–7.2-fold more macrophage and erythroid colony forming units (CFUs) than those derived from control iPS cells. These data indicate that EMS-iPS cells have an increased hematopoietic differentiation capacity, which is characteristic of MPDs. To determine whether a tyrosine kinase inhibitor (TKI) could suppress the increased number of CFUs formed by EMS-iPS-induced CD34+ cells, cells were treated with one of four TKIs (CHIR258, PKC 412, ponatinib, and imatinib). CHIR258, PKC 412, and ponatinib reduced the number of CFUs formed by EMS-iPS-induced CD34+ cells in a dose-dependent manner, whereas imatinib did not. Similar effects were observed on primary peripheral blood cells (more than 90% of which were blasts) isolated from the patient. This study provides evidence that the EMS-iPS cell line is a useful tool for the screening of drugs to treat EMS and to investigate the mechanism underlying this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号