首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schizosaccharomyces pombe Rqh1 is a member of the RecQ DNA helicase family. Members of this protein family are mutated in cancer predisposition diseases, causing Bloom's, Werner, and Rothmund-Thomson syndromes. Rqh1 forms a complex with topoisomerase III and is proposed to process or disrupt aberrant recombination structures that arise during S phase to allow proper chromosome segregation during mitosis. Intriguingly, in the absence of Rqh1, processing of these structures appears to be dependent on Rad3 (human ATR) in a manner that is distinct from its role in checkpoint control. Here, we show that rad3 rqh1 mutants are normally committed to a lethal pathway of DNA repair requiring homologous recombination, but blocking this pathway by Rhp51 inactivation restores viability. Remarkably, viability is also restored by overexpression of Cut8, a nuclear envelope protein involved in tethering and proper function of the proteasome. In keeping with a recently described function of the proteasome in the repair of DNA double-strand breaks, we found that Cut8 is also required for DNA double-strand break repair and is essential for proper chromosome segregation in the absence of Rqh1, suggesting that these proteins might function in a common pathway in homologous recombination repair to ensure accurate nuclear division in S. pombe.  相似文献   

2.
Hope JC  Maftahi M  Freyer GA 《Genetics》2005,170(2):519-531
Following replication arrest, multiple cellular responses are triggered to maintain genomic integrity. In fission yeast, the RecQ helicase, Rqh1, plays a critical role in this process. This is demonstrated in Deltarqh1 cells that, following treatment with hydroxyurea (HU), undergo an aberrant mitosis leading to cell death. Previous data suggest that Rqh1 functions with homologous recombination (HR) in recovery from replication arrest. We have found that loss of the HR genes rhp55(+) or rhp57(+), but not rhp51(+) or rhp54(+), suppresses the HU sensitivity of Deltarqh1 cells. Much of this suppression requires Rhp51 and Rhp54. In addition, this suppression is partially dependent on swi5(+). In budding yeast, overexpressing Rad51 (the Rhp51 homolog) minimized the need for Rad55/57 (Rhp55/57) in nucleoprotein filament formation. We overexpressed Rhp51 in Schizosaccharomyces pombe and found that it greatly reduced the requirement for Rhp55/57 in recovery from DNA damage. However, overexpressing Rhp51 did not change the Deltarhp55 suppression of the HU sensitivity of Deltarqh1, supporting an Rhp55/57 function during HR independent of nucleoprotein filament formation. These results are consistent with Rqh1 playing a role late in HR following replication arrest and provide evidence for a postsynaptic function for Rhp55/57.  相似文献   

3.
Slx1 and Slx4 are subunits of a structure-specific DNA endonuclease that is found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other eukaryotic species. It is thought to initiate recombination events or process recombination structures that occur during the replication of the tandem repeats of the ribosomal DNA (rDNA) locus. Here, we present evidence that fission yeast Slx1-Slx4 initiates homologous recombination events in the rDNA repeats that are processed by a mechanism that requires Rad22 (Rad52 homologue) but not Rhp51 (Rad51 homologue). Slx1 is required to generate approximately 50% of the spontaneous Rad22 DNA repair foci that occur in cycling cells. Most of these foci colocalize with the nucleolus, which contains the rDNA repeats. The increased fork pausing at the replication fork barriers in the rDNA repeats in a strain that lacks Rqh1 DNA helicase is further increased by expression of a dominant negative form of Slx1. These data suggest that Slx1-Slx4 cleaves paused replication forks in the rDNA, leading to Rad22-dependent homologous recombination that is used to maintain rDNA copy number.  相似文献   

4.
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51.  相似文献   

5.
Ahn JS  Osman F  Whitby MC 《The EMBO journal》2005,24(11):2011-2023
Homologous recombination is believed to play important roles in processing stalled/blocked replication forks in eukaryotes. In accordance with this, recombination is induced by replication fork barriers (RFBs) within the rDNA locus. However, the rDNA locus is a specialised region of the genome, and therefore the action of recombinases at its RFBs may be atypical. We show here for the first time that direct repeat recombination, dependent on Rad22 and Rhp51, is induced by replication fork blockage at a site-specific RFB (RTS1) within a 'typical' genomic locus in fission yeast. Importantly, when the RFB is positioned between the direct repeat, conservative gene conversion events predominate over deletion events. This is consistent with recombination occurring without breakage of the blocked fork. In the absence of the RecQ family DNA helicase Rqh1, deletion events increase dramatically, which correlates with the detection of one-sided DNA double-strand breaks at or near RTS1. These data indicate that Rqh1 acts to prevent blocked replication forks from collapsing and thereby inducing deletion events.  相似文献   

6.
Schizosaccharomyces pombe Rhp55 and Rhp57 are RecA-like proteins involved in double-strand break (DSB) repair. Here we demonstrate that Rhp55 and Rhp57 proteins strongly interact in vivo, similar to Saccharomyces cerevisiae Rad55p and Rad57p. Mutations in the conserved ATP-binding/hydrolysis folds of both the Rhp55 and Rhp57 proteins impaired their function in DNA repair but not in cell proliferation. However, when combined, ATPase fold mutations in Rhp55p and Rhp57p resulted in severe defects of both functions, characteristic of the deletion mutants. Yeast two-hybrid analysis also revealed other multiple in vivo interactions among S. pombe proteins involved in recombinational DNA repair. Similar to S. cerevisiae Rad51p-Rad54p, S. pombe Rhp51p and Rhp54p were found to interact. Both putative Rad52 homologs in S. pombe, Rad22p and Rti1p, were found to interact with the C-terminal region of Rhp51 protein. Moreover, Rad22p and Rti1p exhibited mutual, as well as self-, interactions. In contrast to the S. cerevisiae interacting pair Rad51p-Rad55p, S. pombe Rhp51 protein strongly interacted with Rhp57 but not with Rhp55 protein. In addition, the Rti1 and Rad22 proteins were found to form a complex with the large subunit of S. pombe RPA. Our data provide compelling evidence that most, but not all, of the protein-protein interactions found in S. cerevisiae DSB repair are evolutionarily conserved.  相似文献   

7.
The telomere complex must allow nucleases and helicases to process chromosome ends to make them substrates for telomerase, while preventing these same activities from disrupting chromosome end-protection. Replication protein A (RPA) binds to single-stranded DNA and is required for DNA replication, recombination, repair, and telomere maintenance. In fission yeast, the telomere binding protein Taz1 protects telomeres and negatively regulates telomerase. Here, we show that taz1-d rad11-D223Y double mutants lose their telomeric DNA, indicating that RPA (Rad11) and Taz1 are synergistically required to prevent telomere loss. Telomere loss in the taz1-d rad11-D223Y double mutants was suppressed by additional mutation of the helicase domain in a RecQ helicase (Rqh1), or by overexpression of Pot1, a single-strand telomere binding protein that is essential for protection of chromosome ends. From our results, we propose that in the absence of Taz1 and functional RPA, Pot1 cannot function properly and the helicase activity of Rqh1 promotes telomere loss. Our results suggest that controlling the activity of Rqh1 at telomeres is critical for the prevention of genomic instability.  相似文献   

8.
During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.  相似文献   

9.
The SGS1 gene of Saccharomyces (cerevisiae is a homologue of the genes affected in Bloom's syndrome, Werner's syndrome, and Rothmund-Thomson's syndrome. Disruption of the SGS1 gene is associated with high sensitivity to methyl methanesulfonate (MMS) and hydroxyurea (HU), and with hyper-recombination phenotypes, including interchromosomal recombination between heteroalleles. SGS1 encodes a protein which has a helicase domain similar to that of Escherichia coli RecQ. A comparison of amino acid sequences among helicases of the RecQ family reveals that Sgs1,WRN, and BLM share a conserved region adjacent to the C-terminal part of the helicase domain (C-terminal conserved region). In addition, Sgs1 contains two highly charged acidic regions in its N-terminal region and the HRDC (helicase and RNaseD C-terminal) domain at its C-terminal end. These regions were also found in BLM and WRN, and in Rqh1 from Schizosaccharomyces pombe. In this study, we demonstrate that the C-terminal conserved region, as well as the helicase motifs, of Sgs1 are essential for complementation of MMS sensitivity and suppression of hyper-recombination in sgs1 mutants. In contrast, the highly charged acidic regions, the HRDC domain, and the C-terminal 252 amino acids were dispensable for the complementation of these phenotypes. Surprisingly, the N-terminal 45 amino acids of Sgs1 were absolutely required for the suppression of the above phenotypes. Introduction of missense mutations into the region encoding amino acids 4-13 abolished the ability of Sgsl to complement MMS sensitivity and suppress hyper-recombination in sgs1 mutants, and also prevented its interaction with Top3, indicating that interaction with Top3 via the N-terminal region of Sgs1 is involved in the complementation of MMS sensitivity and the suppression of hyper-recombination.  相似文献   

10.
Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.  相似文献   

11.
A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1(-) mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.  相似文献   

12.
Cromie GA  Hyppa RW  Smith GR 《Genetics》2008,179(3):1157-1167
RecQ helicases are found in organisms as diverse as bacteria, fungi, and mammals. These proteins promote genome stability, and mutations affecting human RecQ proteins underlie premature aging and cancer predisposition syndromes, including Bloom syndrome, caused by mutations affecting the BLM protein. In this study we show that mutants lacking the Rqh1 protein of the fission yeast Schizosaccharomyces pombe, a RecQ and BLM homolog, have substantially reduced meiotic recombination, both gene conversions and crossovers. The relative proportion of gene conversions having associated crossovers is unchanged from that in wild type. In rqh1 mutants, meiotic DNA double-strand breaks are formed and disappear with wild-type frequency and kinetics, and spore viability is only moderately reduced. Genetic analyses and the wild-type frequency of both intersister and interhomolog joint molecules argue against these phenotypes being explained by an increase in intersister recombination at the expense of interhomolog recombination. We suggest that Rqh1 extends hybrid DNA and biases the recombination outcome toward crossing over. Our results contrast dramatically with those from the budding yeast ortholog, Sgs1, which has a meiotic antirecombination function that suppresses recombination events involving more than two DNA duplexes. These observations underscore the multiple recombination functions of RecQ homologs and emphasize that even conserved proteins can be adapted to play different roles in different organisms.  相似文献   

13.
The RecQ helicase Sgs1p forms a complex with the type 1 DNA topoisomerase Top3p that resolves double Holliday junctions resulting from Rad51-mediated exchange. We find, however, that Sgs1p functions independently of both Top3p and Rad51p to stimulate the checkpoint kinase Rad53p when replication forks stall due to dNTP depletion on hydroxyurea. Checkpoint activation does not require Sgs1p function as a helicase, and correlates with its ability to bind the Rad53p kinase FHA1 motif directly. On the other hand, Sgs1p's helicase activity is required together with Top3p and the strand-exchange factor Rad51p, to help stabilise DNA polymerase epsilon at stalled replication forks. In this function, the Sgs1p/Top3p complex acts in parallel to the Claspin-related adaptor, Mrc1p, although the sgs1 and mrc1 mutations are epistatic for Rad53p activation. We thus identify two distinct pathways through which Sgs1p contributes to genomic integrity: checkpoint kinase activation requires Sgs1p as a noncatalytic Rad53p-binding site, while the combined Top3p/Sgs1p resolvase activity contributes to replisome stability and recovery from arrested replication forks.  相似文献   

14.
Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51+. The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51+. Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.  相似文献   

15.
Rad51 is crucial not only in homologous recombination and recombinational repair but also in normal cellular growth. To address the role of Rad51 in normal cell growth we investigated morphological changes of cells after overexpression of wild-type and a dominant negative form of Rad51 in fission yeast. Rhp51, a Rad51 homolog in Schizosaccharomyces pombe, has a highly conserved ATP-binding motif. Rhp51 K155A, which has a single substitution in this motif, failed to rescue hypersensitivity of a rhp51Δ mutant to methyl methanesulfonate (MMS) and UV, whereas it binds normally to Rhp51 and Rad22, a Rad52 homolog. Two distinct cellular phenotypes were observed when Rhp51 or Rhp51 K155A was overexpressed in normal cells. Overexpression of Rhp51 caused lethality in the absence of DNA-damaging agents, with acquisition of a cell cycle mutant phenotype and accumulation of a 1C DNA population. On the other hand, overexpression of Rhp51 K155A led to a delay in G2 with decondensed nuclei, which resembled the phenotype of rhp51Δ. The latter also exhibited MMS and UV sensitivity, indicating that Rhp51 K155A has a dominant negative effect. These results suggest an association between DNA replication and Rad51 function.  相似文献   

16.
The discovery of three Rad51 paralogs in Saccharomyces cerevisiae (Rad55, Rad57, and Dmc1), four in Schizosaccharomyces pombe (Rhp55, Rhp57, Rlp 1, and Dmc 1), and six in human (Rad51 B, Rad51 C, Rad51 D, Xrcc2, Xrcc3, and Dmcl) indicate the functional diversity and specialization of RecA-like proteins in the line from the lower to higher organisms. This paper reports characterization of a number of mitotic and meiotic phenotypes of the cells mutant in rlpl gene, encoding a paralog of Rad5 1, in fission yeasts. No evident role of Rlp I protein in the repair of spontaneous lesions emerging during mating type switching was found. Rlpl does not interact physically with Dmcl. An elevated expression of rhp51 has a dominant negative effect on the cell survivability of rlpl mutant exposed to a DNA-damaging agent. We assume that Rlp 1 acts at the stages of recombination connected with disassembling of the nucleoprotein filament formed by Rhp51 protein.  相似文献   

17.
A new DNA repair gene from fission yeast Schizosaccharomyces pombe rlp1+ (RecA-like protein) has been identified. Rlp1 shows homology to RecA-like proteins, and is the third S. pombe Rad51 paralog besides Rhp55 and Rhp57. The new gene encodes a 363 aa protein with predicted Mr of 41,700 and has NTP-binding motif. The rlp1Delta mutant is sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and camptothecin (CPT), although to a lesser extent than the deletion mutants of rhp55+ and rhp51+ genes. In contrast to other recombinational repair mutants, the rlp1Delta mutant does not exhibit sensitivity to UV light and mitomycin C (MMC). Mitotic recombination is moderately reduced in rlp1 mutant. Epistatic analysis of MMS and IR-sensitivity of rlp1Delta mutant indicates that rlp1+ acts in the recombinational pathway of double-strand break (DSB) repair together with rhp51+, rhp55+, and rad22+ genes. Yeast two-hybrid analysis suggests that Rlp1 may interact with Rhp57 protein. We propose that Rlp1 have an accessory role in repair of a subset of DNA damage induced by MMS and IR, and is required for the full extent of DNA recombination and cell survival under condition of a replication fork collapse.  相似文献   

18.
In eukaryotes, Rad51 and Rad52 are two key components of homologous recombination and recombinational repair. These two proteins interact with each other. Here we investigated the role of interaction between Rhp51 and Rad22, the fission yeast homologs of Rad51 and Rad52, respectively, on the function of each protein. We identified a direct association between the two proteins and their self-interactions both in vivo and in vitro. We also determined the binding domains of each protein that mediate these interactions. To characterize the role of Rhp51-Rad22 interaction, we used random mutagenesis to identify the mutants Rhp51 and Rad22, which cannot interact each other. Interestingly, we found that mutant Rhp51 protein, which cannot interact with either Rad22 or Rti1 (G282D), lost its DNA repair ability. In contrast, mutant Rad22 proteins, which cannot specifically bind to Rhp51 (S379L and P381L), maintained their DNA repair ability. These results suggest that the interaction between Rhp51 and Rad22 is crucial for the recombinational repair function of Rhp51. However, the significance of this interaction on the function of Rad22 remains to be characterized further.  相似文献   

19.
In budding yeast most Rad51-dependent and -independent recombination depends on Rad52. In contrast, its homologue in fission yeast, Rad22, was assumed to play a less critical role possibly due to functional redundancy with another Rad52-like protein Rti1. We show here that this is not the case. Rad22 like Rad52 plays a central role in recombination being required for both Rhp51-dependent and -independent events. Having established this we proceed to investigate the involvement of the Mus81–Eme1 endonuclease in these pathways. Mus81 plays a relatively minor role in the Rhp51-dependent repair of DNA damage induced by ultraviolet light. In contrast Mus81 has a key role in the Rad22-dependent (Rhp51-independent) repair of damage induced by camptothecin, hydroxyurea and methyl-methanesulfonate. Furthermore, spontaneous intrachromosomal recombination that gives rise to deletion recombinants is impaired in a mus81 mutant. From these data we propose that a Rad22–Mus81-dependent (Rhp51-independent) pathway is an important mechanism for the repair of DNA damage in fission yeast. Consistent with this we show that in vitro Rad22 can promote strand invasion to form a D-loop that can be cleaved by Mus81.  相似文献   

20.
Shor E  Weinstein J  Rothstein R 《Genetics》2005,169(3):1275-1289
Helicases of the RecQ family and topoisomerase III are evolutionarily conserved proteins important for maintenance of genome stability. In Saccharomyces cerevisiae, loss of the TOP3 gene, encoding topoisomerase III, results in a phenotype of slow growth, DNA damage sensitivity, meiotic defects, and hyperrecombination. The sole RecQ helicase in budding yeast, Sgs1, interacts with Top3 both physically and genetically, and the two proteins are thought to act in concert in vivo. Much recent genetic and biochemical evidence points to the role of RecQ helicases and topoisomerase III in regulating homologous recombination (HR) during DNA replication. Previously, we found that mutations in HR genes partially suppress top3 slow growth. Here, we describe the analysis of four additional mutational suppressors of top3 defects: shu1, shu2, psy3, and csm2. These genes belong to one epistasis group and their protein products interact with each other, strongly suggesting that they function as a complex in vivo. Their mutant phenotype indicates that they are important for error-free repair of spontaneous and induced DNA lesions, protecting the genome from mutation. These mutants exhibit an epistatic relationship with rad52 and show altered dynamics of Rad52-YFP foci, suggesting a role for these proteins in recombinational repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号