首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
The aim of this study was to examine sponge orange band (SOB) disease affecting the prominent Caribbean sponge Xestospongia muta. Scanning and transmission electron microscopy revealed that SOB is accompanied by the massive destruction of the pinacoderm. Chlorophyll a content and the main secondary metabolites, tetrahydrofurans, characteristic of X. muta, were significantly lower in bleached than in healthy tissues. Denaturing gradient gel electrophoresis using cyanobacteria-specific 16S rRNA gene primers revealed a distinct shift from the Synechococcus/Prochlorococcus clade of sponge symbionts towards several clades of unspecific cyanobacteria, including lineages associated with coral disease (i.e. Leptolyngbya sp.). Underwater infection experiments were conducted by transplanting bleached cores into healthy individuals, but revealed no signs of SOB development. This study provided no evidence for the involvement of a specific microbial pathogen as an etiologic agent of disease; hence, the cause of SOB disease in X. muta remains unidentified.  相似文献   

2.
The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology.  相似文献   

3.
Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species “Candidatus Synechococcus spongiarum,” were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.  相似文献   

4.
White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.  相似文献   

5.
6.
7.
Leys SP 《Tissue & cell》1997,29(1):77-87
Hexactinellids are deep water sponges that possess syncytial rather than cellular tissues. In order to investigate the syncytial character of the tissue of these unusual sponges, primary cultures were developed using a substrate of acellular tissue extract (ATE) that promotes the adhesion and spreading of sponge tissues. Primary cultures of the hexactinellid sponge Rhabdocalyptus dawsoni, grown on this substrate, form thinly spread, multinucleate, confluent tissue masses which exhibit active cytoplasmic streaming. Sponge tissue adhered equally well to commercial substrates of concanavalin A and poly-l-lysine, but did not adhere to chicken collagen. Acellular tissue extracts prepared from demosponges, which are known to be cellular, also promoted adhesion and spreading of cells from those sponges. Scanning electron microscopy showed adherent Rhabdocalyptus tissue to have an uninterrupted, smooth membrane covering the entire culture, unlike primary cultures of the cellular demosponge, Haliclona sp., which consisted of numerous individual cells. Tissue from freshly collected sponges adhered preferentially to ATE from a conspecific. However, after continued wounding, tissue adhered indescriminately to any substrate. The tissue extract congealed if added to sea water or 10 mM CaCl(2), forming a white, cloudy solid, which could be fixed and sectioned for transmission electron microscopy. Thin sections of the congealed extract showed it to contain membranes but no visible collagen fibrils.  相似文献   

8.
Sponges (Porifera) are aquatic, sessile filter feeders. As such they are permanently exposed to bacteria in the seawater. Molecular data recovered from sponges by PCR shows a high diversity in bacterial DNA. Hence, sponges are considered to live in close association with a diverse and abundant bacterial community. To recover the spatial distribution of bacteria in sponges we retrieved histological sections of Aplysina aerophoba fixed in situ. By combining signals from fluorescence in situ hybridization (FISH), light microscopy and scanning electron microscopy we revealed a detailed histological picture of the spatial organization of the sponge microbial association within the sponges. Our histological results confirm a high abundance of cyanobacteria inside A. aerophoba while other living bacteria are almost absent. This detailed insight into sponge microbiology could only be achieved by the combination of careful sample preparation and different microscopical and histological methods. It also shows the need to confirm molecular datasets in situ and with a high spatial resolution.  相似文献   

9.

Background

Marine diseases are of increasing concern for coral reef ecosystems, but often their causes, dynamics and impacts are unknown. The current study investigated the epidemiology of Aplysina Red Band Syndrome (ARBS), a disease affecting the Caribbean sponge Aplysina cauliformis, at both the individual and population levels. The fates of marked healthy and ARBS-infected sponges were examined over the course of a year. Population-level impacts and transmission mechanisms of ARBS were investigated by monitoring two populations of A. cauliformis over a three year period using digital photography and diver-collected data, and analyzing these data with GIS techniques of spatial analysis. In this study, three commonly used spatial statistics (Ripley’s K, Getis-Ord General G, and Moran’s Index) were compared to each other and with direct measurements of individual interactions using join-counts, to determine the ideal method for investigating disease dynamics and transmission mechanisms in this system. During the study period, Hurricane Irene directly impacted these populations, providing an opportunity to assess potential storm effects on A. cauliformis and ARBS.

Results

Infection with ARBS caused increased loss of healthy sponge tissue over time and a higher likelihood of individual mortality. Hurricane Irene had a dramatic effect on A. cauliformis populations by greatly reducing sponge biomass on the reef, especially among diseased individuals. Spatial analysis showed that direct contact between A. cauliformis individuals was the likely transmission mechanism for ARBS within a population, evidenced by a significantly higher number of contact-joins between diseased sponges compared to random. Of the spatial statistics compared, the Moran’s Index best represented true connections between diseased sponges in the survey area. This study showed that spatial analysis can be a powerful tool for investigating disease dynamics and transmission in a coral reef ecosystem.  相似文献   

10.
Sponges can filter large volumes of seawater and accumulate highly diverse and abundant microbial communities within their tissue. Culture-independent techniques such as fluorescent in situ hybridization (FISH), 16S small subunit (SSU) rRNA gene analyses, and transmission electron microscopy (TEM) were applied to characterize the presence and distribution of microbes within sponges abundant on south Florida reefs. This study found that coral disease-associated bacteria (CDAB) are harbored within Agelas tubulata and Amphimedon compressa. FISH probes detected several potential bacterial pathogens such as Aurantimonas coralicida, Cytophaga sp., Desulfovibrio spp, Serratia marcescans, and Vibrio mediterranei within A. compressa and A. tubulata host sponges. Spatial differences in the distribution of targeted bacteria were seen within sponge hosts. Transmission electron microscopy of A. compressa indicated there was a higher concentration of bacteria in the choanosome compared to the ectosome. These observed spatial distributions support the presence of internal sponge niches, which could play a role in the location of the CDAB within the sponges.  相似文献   

11.
Marine sponges harbor dense microbial communities of exceptionally high diversity. Despite the complexity of sponge microbiota, microbial communities in different sponges seem to be remarkably similar. In this study, we used a subset of a previously established 454 amplicon pyrosequencing dataset (Schmitt and Taylor, unpublished data). Five Mediterranean sponges were chosen including the model sponge Aplysina aerophoba to determine the extent of uniformity by defining (i) the core microbial community, consisting of bacteria found in all sponges, (ii) the variable microbial community, consisting of bacteria found in 2–4 sponges, and (iii) the species-specific community, consisting of bacteria found in only one sponge. Using the enormous sequencing depth of pyrosequencing the diversity in each of the five sponges was extended to up to 15 different bacterial phyla per sponge with Proteobacteria and Chloroflexi being most diverse in each of the five sponges. Similarity comparison of bacteria on phylum and phylotype level revealed most similar communities in A. aerophoba and A. cavernicola and the most dissimilar community in Pseudocorticium jarrei. A surprising minimal core bacterial community was found when distribution of 97% operational taxonomic units (OTUs) was analyzed. Core, variable, and species-specific communities were comprised of 2, 26, and 72% of all OTUs, respectively. This indicates that each sponge contains a large set of unique bacteria and shares only few bacteria with other sponges. However, host species-specific bacteria are probably still closely related to each other explaining the observed similarity among bacterial communities in sponges.  相似文献   

12.
Sponges are a prominent component of coral reef ecosystems. Like reef-building corals, some sponges have been reported to bleach and die. The giant barrel sponge Xestospongia muta is one of the largest and most important components of Caribbean coral reef communities. Tissues of X. muta contain cyanobacterial symbionts of the Synechococcus group. Two types of bleaching have been described: cyclic bleaching, from which sponges recover, and fatal bleaching, which usually results in sponge death. We quantified hsp70 gene expression as an indicator of stress in X. muta undergoing cyclic and fatal bleaching and in response to thermal and salinity variability in both field and laboratory settings. Chlorophyll a content of sponge tissue was estimated to determine whether hsp70 expression was related to cyanobacterial abundance. We found that fatally bleached sponge tissue presented significantly higher hsp70 gene expression, but cyclically bleached tissue did not, yet both cyclic and fatally bleached tissues had lower chlorophyll a concentrations than nonbleached tissue. These results corroborate field observations suggesting that cyclic bleaching is a temporary, nonstressful state, while fatal bleaching causes significant levels of stress, leading to mortality. Our results support the hypothesis that Synechococcus symbionts are commensals that provide no clear advantage to their sponge host. In laboratory experiments, sponge pieces incubated at 30 °C exhibited significantly higher hsp70 expression than control pieces after 1.5 h, with sponge mortality after less than 15 h. In contrast, sponges at different salinities were not significantly stressed after the same period of time. Stress associated with increasing seawater temperatures may result in declining sponge populations in coral reef ecosystems.  相似文献   

13.
An updated list of sponges with algal endosymbionts including new records for Puerto Rico and the Caribbean, indicates that thirty-five species of common Caribbean sponges possess photosynthetic endosymbionts. Of these, 23 (67.6%) species in seven orders, were found with unicellular chroococcoid cyanobacteria (Aphanocapsa-like) and 5 (14.7%) hadromerid species were found with zooxanthellae. Sponges with other algae as symbionts occur less frequently (6%). Thirty-one common sponge species were inspected for bleaching during coral-bleaching months (July-September 1987; January 1988) in Puerto Rico. Anthosigmella varians, Xestospongia muta and Petrosia pellasarca bleached partially, but only few individuals within any given population became bleached and the bleaching of sponges was very localized. Adaptations between cyanobacterial symbionts and sponges, acquired during the long evolutionary history of these two taxa may explain the paucity of bleached sponges when compared to the high incidence of bleached corals reported.  相似文献   

14.
In recent years, several episodes of mass mortality of sessile epibenthic invertebrates, including sponges, have been recorded worldwide. In the present study, we report a disease event on Ircinia variabilis recorded in September 2009 along the southern Adriatic and Ionian seas (Apulian coast), with the aim to quantify the mortality incidence on the sponge population, to investigate the effect of the disease on the sponge tissues and to assess whether the disease is associated with vibrios proliferation. The injured sponges showed wide necrotic areas on the surface or disruption of the body in several portions. Necrotic areas were whitish and often were covered with a thin mucous coat formed by bacteria. In the most affected specimens, sponge organisation resulted partial or complete loss, with the final exposure of the dense skeletal network of spongine fibres to the environment. The results of microbiological cultural analysis using in parallel Marine Agar 2216 and thiosulphate/citrate/bile salts/sucrose agar demonstrated that, in affected specimens, vibrios represented 15.8 % of the total I. variabilis surface culturable bacteria. Moreover, all the isolated vibrios, grown from the wide whitish areas that characterize the surface of the diseased sponges, were identified, and their assignment to the Vibrio rotiferianus was consistent with phylogenetic analysis and data of morphological, cultural and biochemical tests. Studies on V. rotiferianus have shown that its pathogenicity, with respect to various aquatic organisms, is higher than that of Vibrio harveyi. The factors triggering the disease outbreak in Ircinia variabilis populations remain unclear. At present, we can hypothesize the involvement in the disease of a synergetic mechanism that, under stressful physiological conditions (high temperature, elevated nutrients and reduced water flow), induces sponge pathogens, in our case V. rotiferanius, to become virulent, making sponges unable to control their proliferation. Additional studies are needed to understand the etiological processes as well as the factors involved in sponges recovering from this epidemic event allowing them to face mass mortality. A drastic reduction of sponge-specific representatives could have marked a negative impact on the environmental health on account of their role in the sea remediation processes as filter-feeding organisms.  相似文献   

15.
Studies of regeneration provide insight across many scales of animal biology from the processes of cellular communication to the ecology of whole populations. Sponges are highly regenerative animals, with studies showing adults can both recover large portions of their body after predation or damage due to storms, and even reform whole individuals, via an aggregation stage, from dissociated tissues. While sponges are clearly highly regenerative, few studies actually show dissociated cells forming functional individuals. As sponges often serve as model organisms for studying the development and function of traits in metazoans, determining the universality and mechanics of their regeneration potential is important. We tested the capacity of members of seven sponge species from temperate freshwater and marine environments, from a range of taxonomic positions, and with different habits, to form functional sponges after dissociation. Development to a functional sponge progressed through a series of checkpoints: the sorting of cells and removal of debris; adhesion to a substrate and differentiation of cells; organization of cells into tissues; and regionalization of tissues. Two of the seven species tested, Spongilla lacustris and Haliclona cf. permollis, progressed through all four checkpoints, while the remaining five species progressed to various levels of development before aggregates disintegrated. Our findings highlight three important conclusions: (1) The ability of aggregates to differentiate into functional sponges is not as widespread as previously thought; (2) The species‐specific ability of aggregates to develop to functional sponges appears to be an adaptive trait; and (3) The progression of development in aggregates through checkpoints, which in later development involves formation of tissues and regionalization of tissues, highlights the complexity of the sponge body plan and suggests fundamental rules in development shared across metazoans.  相似文献   

16.
采用海绵组织离散、细胞分离的方法,对繁茂膜海绵细胞进行纯化、胞内微生物DNA提取,构建了繁茂膜海绵细胞内微生物的16SrDNA克隆,对其遗传多样性进行了分析,发现海绵细胞内微生物16SrDNA序列主要归类于紫硫细菌门(Proteobacteria)中的α-亚门、γ-亚门和浮霉菌门(Planctomycetes)等类群。与研磨直接提取海绵组织DNA所得海绵组织中总微生物多样性相比,海绵细胞内存在丰富的浮霉菌(23%),说明浮霉菌主要存在于海绵细胞胞内。  相似文献   

17.
The relative abundance of bacteria in the mucus and tissues of Oculina patagonica taken from bleached and cave (azooxanthellae) corals was determined by analyses of the 16S rRNA genes from cloned libraries of extracted DNA and from isolated colonies. The results were compared to previously published data on healthy O. patagonica. The bacterial community of bleached, cave, and healthy corals were completely different from each other. A tight cluster (>99.5% identity) of bacteria, showing 100% identity to Acinetobacter species, dominated bleached corals, comprising 25% of the 316 clones sequenced. The dominant bacterial cluster found in cave corals, representing 29% of the 97 clones sequenced, showed 98% identity to an uncultured bacterium from the Great Barrier Reef. Vibrio splendidus was the most dominant species in healthy O. patagonica. The culturable bacteria represented 0.1–1.0% of the total bacteria (SYBR Gold staining) of the corals. The most abundant culturable bacteria in bleached, cave, and healthy corals were clusters that most closely matched Microbulbifer sp., an α-proteobacterium previously isolated from healthy corals and an α-protobacterium (AB026194), respectively. Three generalizations emerge from this study on O. patagonica: (1) More bacteria are associated with coral tissue than mucus; (2) tissue and mucus populations are different; (3) bacterial populations associated with corals change dramatically when corals lack their symbiotic zooxanthellae, either as a result of the bleaching disease or when growing in the absence of light.  相似文献   

18.
Many marine sponges, hereafter termed high-microbial-abundance (HMA) sponges, harbor large and complex microbial consortia, including bacteria and archaea, within their mesohyl matrices. To investigate vertical microbial transmission as a strategy to maintain these complex associations, an extensive phylogenetic analysis was carried out with the 16S rRNA gene sequences of reproductive (n = 136) and adult (n = 88) material from five different Caribbean species, as well as all published 16S rRNA gene sequences from sponge offspring (n = 116). The overall microbial diversity, including members of at least 13 bacterial phyla and one archaeal phylum, in sponge reproductive stages is high. In total, 28 vertical-transmission clusters, defined as clusters of phylotypes that are found both in adult sponges and their offspring, were identified. They are distributed among at least 10 bacterial phyla and one archaeal phylum, demonstrating that the complex adult microbial community is collectively transmitted through reproductive stages. Indications of host-species specificity and cospeciation were not observed. Mechanistic insights were provided using a combined electron microscopy and fluorescence in situ hybridization analysis, and an indirect mechanism of vertical transmission via nurse cells is proposed for the oviparous sponge Ectyoplasia ferox. Based on these phylogenetic and mechanistic results, we suggest the following symbiont transmission model: entire microbial consortia are vertically transmitted in sponges. While vertical transmission is clearly present, additional environmental transfer between adult individuals of the same and even different species might obscure possible signals of cospeciation. We propose that associations of HMA sponges with highly sponge-specific microbial communities are maintained by this combination of vertical and horizontal symbiont transmission.  相似文献   

19.
A substantial and increasing number of reports have documented dramatic changes and continuing declines in Caribbean coral reef communities over the past 2 decades. To date, the majority of disease reports have focused on scleractinian corals, whereas sponge diseases have been less frequently documented. In this study, we describe Aplysina red band syndrome (ARBS) affecting Caribbean rope sponges of the genus Aplysina observed on shallow reefs in the Bahamas. Visible signs of disease presence included 1 or more rust-colored leading edges, with or without a trailing area of necrotic tissue, such that the lesion forms a contiguous band around part or all of the sponge branch. Microscopic examination of the leading edge of the disease margin indicated that a cyanobacterium was consistently responsible for the coloration. Although the presence of this distinctive coloration was used to characterize the diseased state, it is not yet known whether this cyanobacterium is directly responsible for disease causation. The prevalence of ARBS declined significantly from July to October 2004 before increasing above July levels in January 2005. Transmission studies in the laboratory demonstrated that contact with the leading edge of an active lesion was sufficient to spread ARBS to a previously healthy sponge, suggesting that the etiologic agent, currently undescribed, is contagious. Studies to elucidate the etiologic agent of ARBS are ongoing. Sponges are an essential component of coral reef communities and emerging sponge diseases clearly have the potential to impact benthic community structure on coral reefs.  相似文献   

20.
Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号