首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prions     
Prions were originally defined as infectious agents of protein nature, which caused neurodegenerative diseases in animals and humans. The prion concept implies that the infectious agent is a protein in special conformation that can be transmitted to the normal molecules of the same protein through protein-protein interactions. Until the 1990s, the prion phenomenon was associated with the single protein named PrP. Discovery of prions in lower eukaryotes, the yeast Saccharomyces cerevisiae and fungus Podospora anserina, suggests that prions have wider significance. Prions of lower eukaryotes are not related to diseases; their propagation caused by aggregation of prion-like proteins underlies the inheritance of phenotypic traits and most likely has adaptive significance. This review covers prions of mammals and lower eukaryotes, mechanisms of their appearance de novo and maintenance, structure of prion particles, and prospects for the treatment of prion diseases. Recent data concerning the search for new prion-like proteins is included. The paper focuses on the [PSI+] prion of S. cerevisiae, since at present it is the most investigated one. The biological significance of prions is discussed.  相似文献   

2.
Amyloids are fibrous protein aggregates that arise via polymerization of proteins with their concurrent conformational rearrangement and the formation of a specific cross-β structure. Amyloids are of particular interest as a cause of a vast group of human and animal diseases called amyloidoses. Some of these diseases are caused by prions, a specific type of amyloids, and are transmissible. Apart from mammals, prion amyloids are described in lower eukaryotes, where they act as nonchromosomal genetic determinants. Although amyloids are usually associated with pathologies in humans and animals, the increasing number of findings suggests that the acquisition of an amyloid or prion form by a protein is of biological significance in some cases. The review summarizes the data on the biological significance of prion and nonprion amyloids in a wide range of species from bacteria to mammals.  相似文献   

3.
The modern nomenclature, phenotypic, medical, ecological and phylogenetic classification of streptococci and different classification of streptococcal human diseases are presented. All phylogenetic groups of streptococci have been shown to contain species causing diseases in man. The most medically significant groups are the phylogenetic groups Pyogenes and Mitis. Directions of the improvement of the classification of streptococci and streptococcal human diseases on the basis of modern concepts on the taxonomy of streptococci, the biological properties and ecology of the infective agents, as well as the genesis and clinical picture of diseases induced by them, have been determined.  相似文献   

4.
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties.  相似文献   

5.
A prion primer     
N R Cashman 《CMAJ》1997,157(10):1381-1385
By biological and medical criteria, prions are infectious agents; however, many of their properties differ profoundly from those of conventional microbes. Prions are "encoded" by alterations in protein conformation rather than in nucleic acid or amino acid sequence. New epidemic prion diseases (bovine spongiform encephalopathy and new variant Creutzfeldt-Jakob disease) have recently emerged under the active surveillance of the modern world. The risk of contracting prion disease from blood products or other biologicals is now a focus of worldwide concern. Much has been discovered about prions and prion diseases, but much remains to be done.  相似文献   

6.
Prion diseases are transmissible and fatal neurodegenerative disorders which involve infiltration and activation of mononuclear phagocytes at the brain lesions. A 20-aa acid fragment of the human cellular prion protein, PrP(106-126), was reported to mimic the biological activity of the pathologic isoform of prion and activates mononuclear phagocytes. The cell surface receptor(s) mediating the activity of PrP(106-126) is unknown. In this study, we show that PrP(106-126) is chemotactic for human monocytes through the use of a G protein-coupled receptor formyl peptide receptor-like 1 (FPRL1), which has been reported to interact with a diverse array of exogenous or endogenous ligands. Upon stimulation by PrP(106-126), FPRL1 underwent a rapid internalization and, furthermore, PrP(106-126) enhanced monocyte production of proinflammatory cytokines, which was inhibited by pertussis toxin. Thus, FPRL1 may act as a "pattern recognition" receptor that interacts with multiple pathologic agents and may be involved in the proinflammatory process of prion diseases.  相似文献   

7.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

8.
The family of illnesses called transmissible spongiform encephalopathies (TSEs), or "prion" diseases, is composed of a small number of human and animal neurodegenerative diseases caused by unique pathogenic agents that are still not fully defined. They are best considered as "protein-misfolding diseases" (together with Alzheimer's disease, Parkinson's disease, and a few other rare examples) resulting from the conversion of a normal body protein into a misfolded amyloid multimer. The pathogenic agents display a unique resistance to conventional disinfection methods and an extraordinary environmental durability, which has led the US Department of Agriculture to designate the causative agent of bovine spongiform encephalopathy as a bioterrorism security threat. In this review, precautions and regulations concerning the handling of TSE agents are discussed in relation to personnel and environmental biosafety.  相似文献   

9.
Mammalian prions are infectious agents of proteinaceous nature that cause several incurable neurodegenerative diseases. Interspecies transmission of prions is usually impeded or impossible. Barriers in prion transmission are caused by small interspecies differences in the primary structure of prion proteins. The barriers can also depend on the strain (variant) of a transmitted prion. Interspecies barriers were also shown for yeast prions, which define some heritable phenotypes. Yeast prions reproduce all the main traits of prion transmission barriers observed for mammals. This allowed to show that the barrier in prion transmission can be observed even upon copolymerization of two prionogenic proteins. Available data allow elucidation of the mechanisms that impede prion transmission or make it impossible.  相似文献   

10.
Prion diseases include kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia of humans as well as scrapie and bovine spongiform encephalopathy of animals. For many years, the prion diseases were thought to be caused by viruses despite evidence to the contrary. The unique characteristic common to all of these disorders, whether sporadic, dominantly inherited, or acquired by infection, is that they involve aberrant metabolism of the prion protein. In many cases, the cellular prion protein is converted into the scrapie variant by a process after translation that involves a conformational change. Often the human prion diseases are transmissible experimentally to animals, and all of the inherited prion diseases segregate with prion protein gene mutations.  相似文献   

11.
Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay(ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells(HPDC).  相似文献   

12.
Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrPSc), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP (CtmPrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrPSc was demonstrated in the brains of recipient transgenic mice. This PrPSc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.  相似文献   

13.
The molecular structures of the infectious agents that cause transmissible spongiform encephalopathy (TSE) diseases are still not known despite the current wide acceptance of the prion hypothesis as the basis for their resolution. Here, data supporting and challenging the prion hypothesis in relation to both the biochemical and biological properties of TSE infectious agents are discussed. The need for the independent transmission of TSE agent-specific genetic information is described and the requirements for the molecule to carry this information are proposed. Such a molecule is likely to be a small nucleic acid encoding information to determine the diversity of the pathogenesis of TSE agents.  相似文献   

14.
Defects in axonal transport and synaptic dysfunctions are associated with early stages of several neurodegenerative diseases including Alzheimer's, Huntington's, Parkinson's, and prion diseases. Here, we tested the effect of full-length mammalian prion protein (rPrP) converted into three conformationally different isoforms to induce pathological changes regarded as early subcellular hallmarks of prion disease. We employed human embryonal teratocarcinoma NTERA2 cells (NT2) that were terminally differentiated into neuronal and glial cells and co-cultured together. We found that rPrP fibrils but not alpha-rPrP or soluble beta-sheet rich oligomers caused degeneration of neuronal processes. Degeneration of processes was accompanied by a collapse of microtubules and aggregation of cytoskeletal proteins, formation of neuritic beads, and a dramatic change in localization of synaptophysin. Our studies demonstrated the utility of NT2 cells as valuable human model system for elucidating subcellular events of prion pathogenesis, and supported the emerging hypothesis that defects in neuronal transport and synaptic abnormalities are early pathological hallmarks associated with prion diseases.  相似文献   

15.
Prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals are associated with the accumulation in affected brains of a conformational isomer (PrP(Sc)) of host-derived prion protein (PrP(C)). According to the protein-only hypothesis, PrP(Sc) is the principal or sole component of transmissible prions. The conformational change known to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. The existence of multiple prion strains has been difficult to explain in terms of a protein-only infectious agent but recent studies of human prion diseases suggest that strain-specific phenotypes can be encoded by different PrP conformations and glycosylation patterns. The experimental confirmation that a novel form of human prion disease, variant CJD, is caused by the same prion strain as cattle BSE, has highlighted the pressing need to understand the molecular basis of prion propagation and the transmission barriers that limit their passage between mammalian species. These and other advances in the fundamental biology of prion propagation are leading to strategies for the development of rational therapeutics.  相似文献   

16.
M Enamul Kabir 《朊病毒》2014,8(1):111-116
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.  相似文献   

17.
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrPC) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrPC undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrPC molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrPC-derived molecules as therapeutic agents in prion and Alzheimer diseases.  相似文献   

18.
The recognition that variant Creutzfeldt–Jakob disease (vCJD) is caused by the same prion strain as bovine spongiform encephalopathy in cattle has dramatically highlighted the need for a precise understanding of the molecular biology of human prion diseases. Detailed clinical, pathological and molecular data from a large number of human prion disease patients indicate that phenotypic diversity in human prion disease relates in part to the propagation of disease-related PrP isoforms with distinct physicochemical properties. Incubation periods of prion infection in humans can exceed 50 years and therefore it will be some years before the extent of any human vCJD epidemic can be predicted with confidence.  相似文献   

19.
The recognition that variant Creutzfeldt-Jakob disease (vCJD) is caused by the same prion strain as bovine spongiform encephalopathy in cattle has dramatically highlighted the need for a precise understanding of the molecular biology of human prion diseases. Detailed clinical, pathological and molecular data from a large number of human prion disease patients indicate that phenotypic diversity in human prion disease relates in part to the propagation of disease-related PrP isoforms with distinct physicochemical properties. Incubation periods of prion infection in humans can exceed 50 years and therefore it will be some years before the extent of any human vCJD epidemic can be predicted with confidence.  相似文献   

20.
《朊病毒》2013,7(1):17-22
Concerns over the potential for infectious prion proteins to contaminate human biologics and biotherapeutics have been raised from time to time. Transmission of the pathogenic form of prion protein (PrPSc) through veterinary vaccines has been observed, yet no human case through the use of vaccine products has been reported. However, iatrogenic transmissions of PrPSc in humans through blood components, tissues, and growth hormone have been reported. These findings underscore the importance of reliable detection or diagnostic methods to prevent the transmission of prion diseases, given that the number of asymptomatic infected individuals remains unknown, the perceived incubation time for human prion diseases could be decades, and no cure of the diseases has been found yet. A variety of biochemical and molecular methods can selectively concentrate PrPSc to facilitate its detection in tissues and cells. Furthermore, some methods routinely used in the manufacturing process of biological products have been found to be effective in reducing PrPSc from the products. Questions remain unanswered as to the validation criteria of these methods, the minimal infectious dose of the PrPSc required to cause infection and the susceptibility of cells used in gene therapy or the manufacturing process of biological products to PrPSc infections. Here, we discuss some of these challenging issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号