首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Heparan sulfate (HS) is a highly sulfated polysaccharide and is present in large quantities on the cell surface and in the extracellular matrix. Herpes simplex virus type 1 (HSV-1) utilizes a specialized cell surface HS, known as 3-O-sulfated HS, as an entry receptor to establish infection. Here, we exploit an approach to inhibiting HSV-1 infection by using a 3-O-sulfated octasaccharide, mimicking the active domain of the entry receptor. The 3-O-sulfated octasaccharide was synthesized by incubating a heparin octasaccharide (3-OH octasaccharide) with HS 3-O-sulfotransferase isoform 3. The resultant 3-O-sulfated octasaccharide has a structure of Delta UA2S-GlcNS6S-IdoUA2S-GlcNS6S-IdoUA2S-GlcNS3S6S-IdoUA2S-GlcNS6S (where Delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is D-glucosamine, and IdoUA is L-iduronic acid). Results from cell-based assays revealed that the 3-O-sulfated octasaccharide has stronger activity in blocking HSV-1 infection than that of the 3-OH octasaccharide, suggesting that the inhibition of HSV-1 infection requires a unique sulfation moiety. Our results suggest the feasibility of inhibiting HSV-1 infection by blocking viral entry with a specific oligosaccharide.  相似文献   

2.
Heparan sulfate (HS) 6-O-endosulfatases (Sulfs) have emerged recently as critical regulators of many physiological and pathological processes. By removing 6-O-sulfates from specific HS sequences, they modulate the activities of a variety of growth factors and morphogens, including fibroblast growth factor (FGF)-1. However, little is known about the functions of Sulfs in inflammation. Tumour-necrosis factor (TNF)-α plays an important role in regulating the behaviour of fibroblasts. In this study, we examined the effect of this inflammatory cytokine on the expression of Sulfs in human MRC-5 fibroblasts. Compositional analysis of HS from TNF-α-treated cells showed a strong reduction in the amount of the trisulfated UA2S-GlcNS6S disaccharide, which suggested a selective reaction of 6-O-desulfation. Real-time PCR analysis revealed that TNF-α increased Sulf-1 expression in a dose- and time-dependent manner, via a mechanism involving NF-ĸB, ERK1/2 and p38 MAPK. In addition, we confirmed that cell stimulation with TNF-α was accompanied by the secretion of an active form of Sulf-1. To study the function of Sulf- 1, we examined the responses induced by FGF-1. We showed that ERK1/2 activation and cell proliferation were markedly reduced in TNF-α-treated MRC-5 cells compared with untreated cells. Silencing the expression of Sulf-1 by RNA interference restored the responses induced by FGF-1, which indicated that TNF-α-mediated induction of the sulfatase indeed resulted in alterations of HS biological properties. Taken together, our results indicate that Sulf-1 is responsive to TNF-α stimulation and may function as an autocrine regulator of fibroblast expansion in the course of an inflammatory response.  相似文献   

3.
R M Pope  C S Raska  S C Thorp  J Liu 《Glycobiology》2001,11(6):505-513
A highly sensitive method to identify and quantify heparan sulfate (HS) oligosaccharides by using nano-electrospray ionization mass spectrometry (nESI-MS) is described. The new approach allows us to detect approximately 50 nM of a chemically synthesized pentasaccharide with a structure of GlcNS6S-GlcA-GlcNS6S-IdoA2S-GlcNS6SOMe (3-OH pentasaccharide). Typically, solutions were infused for a total of 5 min, at an average flow rate of 30 nl/min, and the remaining sample was recovered from the nanovial. The spectra shown were obtained by summing scans for 1--3 min. Hence, our data indicated that as little as 3 x 10(-15) mole of the pentasaccharide was consumed to obtain a reasonable spectrum at the concentration as low as 50 nM. In addition, we found a linear relationship between the relative response of the molecular ion and the concentration of the analyzed 3-OH pentasaccharide, demonstrating that this approach can be used to determine the amount of HS oligosaccharides. To this end, a 3-O-sulfated pentasaccharide was prepared by incubating the 3-OH pentasaccharide with purified HS 3-O-sulfotransferase-1 and 3'-phosphoadenosine-5'-phospho[(35)S]sulfate. The resulting 3-O-sulfated pentasaccharide was purified and analyzed by nESI-MS. Based on the standard curve constructed with the 3-OH pentasaccharide, we calculated the concentration of the 3-O-sulfated pentasaccharide by the relative response. The result indicates that this value is very close to the value measured by [(35)S]sulfate radioactivity. In conclusion, nESI-MS provides both high sensitivity and the capacity to quantify HSs. This approach is likely to become a very important tool for structural analysis and sequencing of HS and heparin oligosaccharides.  相似文献   

4.
Heparan sulfate (HS) interacts with a variety of proteins and thus mediates numerous complex biological processes. These interactions critically depend on the patterns of O-sulfate groups within the HS chains that determine binding sites for proteins. In particular the distribution of 6-O-sulfated glucosamine residues influences binding and activity of HS-dependent signaling molecules. The protein binding domains of HS show large structural variability, potentially because of differential expression patterns of HS biosynthetic enzymes along with differences in substrate specificity. To investigate whether different isoforms of HS glucosaminyl 6-O-sulfotransferase (6-OST) give rise to differently sulfated domains, we have introduced mouse 6-OST1, 6-OST2, and 6-OST3 in human embryonic kidney 293 cells and compared the effects of overexpression on HS structure. High expression of any one of the 6-OST enzymes resulted in appreciably increased 6-O-sulfation of N-sulfated as well as N-acetylated glucosamine units. The increased 6-O-sulfation was accompanied by a decrease in nonsulfated as well as in iduronic acid 2-O-sulfated disaccharide structures. Furthermore, overexpression led to an altered HS domain structure, the most striking effect was the formation of extended 6-O-sulfated predominantly N-acetylated HS domains. Although the effect was most noticeable in 6-OST3-expressing cells, these results were largely independent of the particular 6-OST isoform expressed and mainly influenced by the level of overexpression.  相似文献   

5.
Antibodies against heparan sulfate (HS) are useful tools to study the structural diversity of HS. They demonstrate the large sequential variation within HS and show the distribution of HS oligosaccharide sequences within their natural environment. We analyzed the distribution and the structural characteristics of the oligosaccharide epitope recognized by anti-HS antibody HS4C3. Biosynthetic and synthetic heparin-related oligosaccharide libraries were used in affinity chromatography, immunoprecipitation, and enzyme-linked immunosorbent assay to identify this epitope as a 3-O-sulfated motif with antithrombin binding capacity. The antibody binds weakly to any N-sulfated, 2-O- and 6-O-sulfated hexa- to octasaccharide fragment but strongly to the corresponding oligosaccharide when there is a 3-O-sulfated glucosamine residue present in the sequence. This difference was highlighted by affinity interaction and immunohistochemistry at salt concentrations from 500 mm. At physiological salt conditions the antibody strongly recognized basal lamina of epithelia and endothelia. At 500 mm salt conditions, when 3-O sulfation is required for binding, antibody recognition was more restricted and selective. Antibody HS4C3 bound similar tissue structures as antithrombin in rat kidney. Furthermore, antithrombin and antibody HS4C3 could compete with one another for binding to heparin. Antibody HS4C3 was also able to inhibit the anti-coagulant activities of heparin and Arixtra as demonstrated using the activated partial thromboplastin time clotting and the anti-factor Xa assays. In summary, antibody HS4C3 selectively detects 3-O-sulfated HS structures and interferes with the coagulation activities of heparin by association with the anti-thrombin binding pentasaccharide sequence.  相似文献   

6.
Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have examined the contribution of the epimer configuration of neighboring uronic acid residues next to the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found that both 3-OST1 and 3-OST3a preferentially sulfate the 6-O-sulfated, N-sulfoglucosamine when an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes have promiscuous and overlapping actions that are differentially regulated by iduronyl 2-O-sulfation.  相似文献   

7.
8.
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine residue of heparan sulfate (HS) to form 3-O-sulfated HS. The 3-O-sulfated glucosamine residue contributes to two important biological functions of HS: binding to antithrombin and thereby carrying anticoagulant activity, and binding to herpes simplex viral envelope glycoprotein D to serve as an entry receptor for herpes simplex virus 1. A total of five HS 3-O-sulfotransferase isoforms were reported previously. Here we report the isolation and characterization of a novel HS 3-O-sulfotransferase isoform, designated as HS 3-O-sulfotransferase isoform 5 (3-OST-5). 3-OST-5 cDNA was isolated from a human placenta cDNA library and expressed in COS-7 cells. The disaccharide analysis of 3-OST-5-modified HS revealed that 3-OST-5 generated at least three 3-O-sulfated disaccharides as follows: IdoUA2S-AnMan3S, GlcUA-AnMan3S6S, and IdoUA2S-AnMan3S6S. Transfection of the plasmid expressing 3-OST-5 rendered wild type Chinese hamster ovary cells susceptible to the infection by herpes simplex virus 1, suggesting that 3-OST-5-modified HS serves as an entry receptor for herpes simplex virus 1. In addition, 3-OST-5-modified HS bound to herpes simplex viral envelope protein glycoprotein D. Furthermore, we found that 3-OST-5-modified HS also bound to antithrombin, suggesting that 3-OST-5 also produces anticoagulant HS. In summary, our results indicate that a new member of 3-OST family generates both anticoagulant HS and an entry receptor for herpes simplex virus 1. These results provide a new insight regarding the mechanism for the biosynthesis of biologically active HS.  相似文献   

9.
We have characterized the structure of a sulfated d-galactan from the red algae Botryocladia occidentalis. The following repeating structure (-4-alpha-d-Galp-1-->3-beta-d-Galp-1-->) was found for this polysaccharide, but with a variable sulfation pattern. Clearly one-third of the total alpha-units are 2,3-di-O-sulfated and another one-third are 2-O-sulfated. The algal sulfated d-galactan has a potent anticoagulant activity (similar potency as unfractionated heparin) due to enhanced inhibition of thrombin and factor Xa by antithrombin and/or heparin cofactor II. We also extended the experiments to several sulfated polysaccharides from marine invertebrates with simple structures, composed of a single repeating structure. A 2-O- or 3-O-sulfated l-galactan (as well as a 2-O-sulfated l-fucan) has a weak anticoagulant action when compared with the potent action of the algal sulfated d-galactan. Possibly, the addition of two sulfate esters to a single alpha-galactose residue has an "amplifying effect" on the anticoagulant action, which cannot be totally ascribed to the increased charge density of the polymer. These results indicate that the wide diversity of polysaccharides from marine alga and invertebrates is a useful tool to elucidate structure/anticoagulant activity relationships.  相似文献   

10.
Heparan sulfate (HS) chains interact with various growth and differentiation factors and morphogens, and the most interactions occur on the specific regions of the chains with certain monosaccharide sequences and sulfation patterns. Here we generated a library of octasaccharides by semienzymatic methods by using recombinant HS 2-O-sulfotransferase and HS 6-O-sulfotransferase, and we have made a systematic investigation of the specific binding structures for various heparin-binding growth factors. An octasaccharide (Octa-I, DeltaHexA-GlcNSO(3)-(HexA-GlcNSO(3))(3)) was prepared by partial heparitinase digestion from completely desulfated N-resulfated heparin. 2-O- and 6-O-sulfated Octa-I were prepared by enzymatically transferring one to three 2-O-sulfate groups and one to three 6-O-sulfate groups per molecule, respectively, to Octa-I. Another octasaccharide containing 3 units of HexA(2SO(4))-GlcNSO(3)(6SO(4)) was prepared also from heparin. This octasaccharide library was subjected to affinity chromatography for interactions with fibroblast growth factor (FGF)-2, -4, -7, -8, -10, and -18, hepatocyte growth factor, bone morphogenetic protein 6, and vascular endothelial growth factor, respectively. Based upon differences in the affinity to those octasaccharides, the growth factors could be classified roughly into five groups: group 1 needed 2-O-sulfate but not 6-O-sulfate (FGF-2); group 2 needed 6-O-sulfate but not 2-O-sulfate (FGF-10); group 3 had the affinity to both 2-O-sulfate and 6-O-sulfate but preferred 2-O-sulfate (FGF-18, hepatocyte growth factor); group 4 required both 2-O-sulfate and 6-O-sulfate (FGF-4, FGF-7); and group 5 hardly bound to any octasaccharides (FGF-8, bone morphogenetic protein 6, and vascular endothelial growth factor). The approach using the oligosaccharide library may be useful to define specific structures required for binding to various heparin-binding proteins. Octasaccharides with the high affinity to FGF-2 and FGF-10 had the activity to release them, respectively, from their complexes with HS. Thus, the library may provide new reagents to specifically regulate bindings of the growth factors to HS.  相似文献   

11.
Heparan sulfate chains (HS) are initially synthesized on core proteins as linear polysaccharides composed of glucuronic acid--N-acetylglucosamine repeating units and subjected to marked structural modification by sulfation (N-, 2-O-, 6-O-, 3-O-sulfotransferases) and epimerization (C5-epimerase) at the Golgi lumen and further by desulfation (6-O- endosulfatase) at the cell surface, after which divergent fine structures are generated. The expression patterns and specificity of the modifying enzymes are, at least partly, responsible for the elaboration of these fine structures of heparan sulfate. HS interacts with many proteins including growth factors (GF) and morphogens through specific fine structures. Recent biochemical and genetic studies have presented evidence that HS plays important roles in cell behavior and organogenesis. In knock-down experiments of heparan sulfate 6-O-sulfotransferase, 6-O-sulfated units in HS have been shown to act as a stimulator or suppressor according to individual GF/morphogen signaling systems.  相似文献   

12.
Heparan sulfates (HS) are linear carbohydrate chains, covalently attached to proteins, that occur on essentially all cell surfaces and in extracellular matrices. HS chains show extensive structural heterogeneity and are functionally important during embryogenesis and in homeostasis due to their interactions with various proteins. Phage display antibodies have been developed to probe HS structures, assess the availability of protein-binding sites, and monitor structural changes during development and disease. Here we have characterized two such antibodies, AO4B08 and HS4E4, previously noted for partly differential tissue staining. AO4B08 recognized both HS and heparin, and was found to interact with an ubiquitouys, N-, 2-O-, and 6-O-sulfated saccharide motif, including an internal 2-O-sulfate group. HS4E4 turned out to preferentially recognize low-sulfated HS motifs containing iduronic acid, and N-sulfated as well as N-acetylated glucosamine residues. Contrary to AO4B08, HS4E4 did not bind highly O-sulfated structures such as found in heparin.  相似文献   

13.
The snail glycosaminoglycan acharan sulfate (AS) is structurally related to heparan sulfates (HS) and has a repeating disaccharide structure of alpha-d-N-acetylglucosaminyl-2-O-sulfo-alpha-l-iduronic acid (GlcNAc-IdoA2S) residues. Using the phage display technology, a unique antibody (MW3G3) was selected against AS with a V(H)3, DP 47, and a CDR3 amino acid sequence of QKKRPRF. Antibody MW3G3 did not react with desulfated, N-deacetylated or N-sulfated AS, indicating that reactivity depends on N-acetyl and 2-O-sulfate groups. Antibody MW3G3 also had a high preference for (modified) heparin oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. In tissues, antibody MW3G3 identified a HS oligosaccharide epitope containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues as enzymatic N-deacetylation of HS in situ prevented staining, and 2-O-sulfotransferase-deficient Chinese hamster ovary cells were not reactive. An immunohistochemical survey using various rat organs revealed a distinct distribution of the MW3G3 epitope, which was primarily present in the basal laminae of most (but not all) blood vessels and of some epithelia, including human skin. No staining was observed in the glycosaminoglycan-rich tumor matrix of metastatic melanoma. In conclusion, we have selected an antibody that identifies HS oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. This antibody may be instrumental in identifying structural alterations in HS in health and disease.  相似文献   

14.
Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.  相似文献   

15.
The hydrozoan is the simplest organism whose movements are governed by the neuromuscular system, and its de novo morphogenesis can be easily induced by the removal of body parts. These features make the hydrozoan an excellent model for studying the regeneration of tissues in vivo, especially in the nervous system. Although glycosaminoglycans (GAGs) and proteoglycans (PGs) have been implicated in the signaling functions of various growth factors and play critical roles in the development of the central nervous system, the isolation and characterization of GAGs from hydrozoans have never been reported. Here, we characterized GAGs of Hydra magnipapillata. Immunostaining using anti-GAG antibodies showed chondroitin or chondroitin sulfate (CS) in the developing nematocyst, which is a sting organelle specific to cnidarians. The CS-PGs might furnish an environment for assembling nematocyst components, and might themselves be components of nematocysts. Therefore, GAGs were isolated from Hydra and their structural features were examined. A considerable amount of CS, three orders of magnitude less heparan sulfate (HS), but no hyaluronan were found, as in Caenorhabditis elegans. Analysis of the disaccharide composition of HS revealed glucosamine 2-N-sulfation, glucosamine 6-O-sulfation, and uronate 2-O-sulfation. CS contains not only nonsulfated and 4-O-sulfated N-acetylgalactosamine (GalNAc) but also 6-O-sulfated GalNAc. The average molecular size of CS and HS was 110 and 10 kDa, respectively. It has also been established here that CS chains are synthesized on the core protein through the ubiquitous linkage region tetrasaccharide, suggesting that indispensable functions of the linkage region in the synthesis of GAGs have been conserved during evolution.  相似文献   

16.
Highly sulfated domains of heparan sulfate (HS), also known as HS S-domains, consist of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)–]. The expression of HS S-domains at the cell surface is determined by two mechanisms: tightly regulated biosynthetic machinery and enzymatic remodeling by extracellular endoglucosamine 6-sulfatases, Sulf-1 and Sulf-2. Intracellular or extracellular deposits of misfolded and aggregated proteins are characteristic of protein aggregation diseases. Although proteins can aggregate alone, deposits of protein aggregates in vivo contain a number of proteinaceous and non-protein components. HS S-domains are one non-protein component of these aggregated deposits. HS S-domains are considered to be critical for signal transduction of several growth factors and several disease conditions, such as tumor progression, but their roles in protein aggregation diseases are not yet fully understood. This review summarizes the current understanding of the possible roles of HS S-domains and Sulfs in the formation and cytotoxicity of protein aggregates.  相似文献   

17.
Chen J  Duncan MB  Carrick K  Pope RM  Liu J 《Glycobiology》2003,13(11):785-794
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.  相似文献   

18.
Heparan sulfate (HS) plays an essential role in extracellular signaling during development. Biochemical studies have established that HS binding to ligands and receptors is regulated by the fine 6-O-sulfated structure of HS; however, mechanisms that control sulfated HS structure and associated signaling functions in vivo are not known. Extracellular HS 6-O-endosulfatases, SULF1 and SULF2, are candidate enzymatic regulators of HS 6-O-sulfated structure and modulate HS-dependent signaling. To investigate Sulf regulation of developmental signaling, we have disrupted Sulf genes in mouse and identified redundant functions of Sulfs in GDNF-dependent neural innervation and enteric glial formation in the esophagus, resulting in esophageal contractile malfunction in Sulf1(-/-);Sulf2(-/-) mice. SULF1 is expressed in GDNF-expressing esophageal muscle and SULF2 in innervating neurons, establishing their direct functions in esophageal innervation. Biochemical and cell signaling studies show that Sulfs are the major regulators of HS 6-O-desulfation, acting to reduce GDNF binding to HS and to enhance GDNF signaling and neurite sprouting in the embryonic esophagus. The functional specificity of Sulfs in GDNF signaling during esophageal innervation was established by showing that the neurite sprouting is selectively dependent on GDNF, but not on neurotrophins or other signaling ligands. These findings provide the first in vivo evidence that Sulfs are essential developmental regulators of cellular HS 6-O-sulfation for matrix transmission and reception of GDNF signal from muscle to innervating neurons.  相似文献   

19.
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.  相似文献   

20.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号