首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we identified proteins showing a differential acetylation pattern during adipogenic differentiation. Here, we examined the role of malate dehydrogenase 2 (MDH2) acetylation in the adipogenesis of 3T3-L1 preadipocytes. The acetylation level of MDH2 showed a dramatic increase during adipogenesis. The overexpression of wild-type MDH2 induced the significant acceleration of adipogenic differentiation. On the other hand, the acetylation-block mutant MDH2 showed significantly reduced adipogenic differentiation compared to the wild type. MDH2 acetylation enhances its enzymatic activity and consequently intracellular NADPH level. These results suggest that the acetylation of MDH2 was affected by the cellular energy state and subsequently regulated adipogenic differentiation.  相似文献   

2.
3.
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.  相似文献   

4.
组蛋白去乙酰化酶(histone deacetylase, HDAC)通过参与调节组蛋白乙酰化修饰调控基因表达. 研究发现多种HDAC参与成脂分化,但其机制尚不清楚. 本研究旨在探讨间充质干细胞C3H10T1/2成脂分化过程中组蛋白去乙酰化酶(HDAC)的表达变化及其对成脂分化的影响. 本研究首先建立了C3H10T1/2体外成脂分化的模型并以油红O染色鉴定成功诱导成脂分化. PCR检测C3H10T1/2细胞成脂分化过程中11种HDAC的变化趋势,发现成脂分化过程中,HDAC1、2、5、9和10的mRNA表达量下降而HDAC3、6、8和11的mRNA表达量明显上升,其中HDAC11上升最为显著. 进一步通过RNA干扰沉默HDAC11表达, PCR检测成脂分化的关键转录因子PPARγ2和成脂标志物Perilipin、Adipoq 的mRNA表达量下降,但Fabp4表达变化不明显. 油红O染色结果表明,诱导C3H10T1/2成脂分化过程中,干扰HDAC11表达,胞浆内脂滴形成数量减少,成脂分化受到抑制. 总之,我们实验的结果提示C3H10T1/2细胞成脂分化伴随着多种HDAC表达的变化,其中HDAC11的增加最显著,干扰HDAC11的表达可以抑制C3H10T1/2细胞的成脂分化.  相似文献   

5.
6.
The purpose of this study is to investigate the effects of euphorbiasteroid, a component of Euphorbia lathyris L., on adipogenesis of 3T3‐L1 pre‐adipocytes and its underlying mechanisms. Euphorbiasteroid decreased differentiation of 3T3‐L1 cells via reduction of intracellular triglyceride (TG) accumulation at concentrations of 25 and 50 μM. In addition, euphorbiasteroid altered the key regulator proteins of adipogenesis in the early stage of adipocyte differentiation by increasing the phosphorylation of AMP‐activated protein kinase (AMPK) and acetyl‐CoA carboxylase. Subsequently, levels of adipogenic proteins, including fatty acid synthase, peroxisome proliferator‐activated receptor‐γ and CCAAT/enhancer‐binding protein α, were decreased by euphorbiasteroid treatment at the late stage of adipocyte differentiation. The anti‐adipogenic effect of euphorbiasteroid may be derived from inhibition of early stage of adipocyte differentiation. Taken together, euphorbiasteroid inhibits adipogenesis of 3T3‐L1 cells through activation of the AMPK pathway. Therefore, euphorbiasteroid and its source plant, E. lathyris L., could possibly be one of the fascinating anti‐obesity agent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
激活Hedgehog信号通路可抑制间充质干细胞成脂分化,但抑制Hedgehog信号通路是否可促进脂肪细胞分化研究结果却并不一致.本研究采用环靶明诱导C3H10T1/2细胞成脂分化,并以国际公认的成脂诱导剂混合物(胰岛素、地塞米松、吲哚美辛和IBMX)诱导细胞分化作为参考. qRT-PCR结果显示,在10 μmol/L环靶明(cyclopamine)处理的C3H10T1/2细胞中,Hedgehog信号通路各基因相对表达量显著下降,而成脂分化调控基因PPARγ,C/EBPα和成脂分化标志基因FABP4相对表达量显著升高(P < 0.05). 与此一致,Western印迹结果表明,在环靶明处理的C3H10T1/2细胞中,Hedgehog信号通路中的Shh蛋白和Gli1蛋白表达水平显著下降,成脂分化相关的PPARγ、C/EBPα和FABP4蛋白表达水平显著升高(P < 0.05). 此外,油红O染色方法证明,环靶明处理可诱导C3H10T1/2细胞成脂分化.以上研究结果提示,抑制Hedgehog信号通路对小鼠胚胎间充质干细胞的成脂分化具有促进作用,并可能为瘦肉型猪的培育和猪肉品质调控研究提供参考依据.  相似文献   

8.
Obesity, mainly characterized by the excess fat storage, is a global health problem resulting in serious morbidity and mortality. Identification of molecular mechanisms in adipogenic differentiation pathway might lead to development of new strategies for diagnosis, prevention and therapy of obesity and associated diseases. Discovery of new genes and proteins in the differentiation pathway could help to understand the key specific regulators of the adipogenesis. Cytoglobin (Cygb), identified as a new globin family member protein, is expressed in various tissues. Although its interaction with oxygen and nitric oxide indicates the potential role in antioxidant pathways, the exact role remains unclear. In the current study, expression level of Cygb was determined in proliferating and differentiating 3T3-F442A cells by gene expression and protein expression analysis. Results revealed that Cygb expression up-regulated in differentiated cells in parallel with adipogenic differentiation markers; PPARγ, CEBPα and FABP4 expressions. Besides, Cygb overexpression in preadipocytes contributed to the adipogenic differentiation as verified by detection of higher lipid droplets and increased PPARγ, CEBPα and FABP4 expressions with respect to control cells. These findings will shed light on the unknown roles of Cygb in adipogenesis and obesity.  相似文献   

9.
10.
Chromatin remodeling is a key mechanism in adipocyte differentiation. However, it is unknown whether dietary polyphenols are epigenetic effectors for adiposity control. Ellagic acid (EA) is a naturally occurring polyphenol in numerous fruits and vegetables. Recently, EA-containing foods have been reported to reduce adiposity. In the present study, we sought to determine whether EA inhibits adipogenesis by modifying chromatin remodeling in human adipogenic stem cells (hASCs). qPCR microarray of chromatin modification enzymes revealed that 10 μmol/L of EA significantly inhibits histone deacetylase (HDAC)9 down-regulation. In addition, EA was associated with up-regulation of HDAC activity and a marked reduction of histone acetylation levels. However, chemical inhibition of HDAC activity or depletion of HDAC9 by siRNA were not sufficient to reverse the antiadipogenic effects of EA. Intriguingly, EA treatment was also associated with reduced histone 3 arginine 17 methylation levels (H3R17me2), implying the inhibitory role of EA in coactivator-associated arginine methyltransferase 1 (CARM)1 activity during adipogenesis. Boosting CARM1 activity by delivering cell-penetrating peptides of CARM1 not only recovered H3R17me2 but also restored adipogenesis evidenced by H3 acetylation at lysine 9, HDAC9 down-regulation, PPARγ expression and triglyceride accumulation. Taken together, our data suggest that reduced CARM1 activity by EA results in a decrease of H3R17me2 levels, which may interrupt consecutive histone remodeling steps for adipocyte differentiation including histone acetylation and HDAC9 dissociation from chromatin. Our work provides the mechanistic insights into how EA, a polyphenol ubiquitously found in fruits and vegetables, attenuates human adipocyte differentiation by altering chromatin remodeling.  相似文献   

11.
dlk1 is an epidermal growth factor (EGF)-like homeotic protein containing an intracellular region, a single transmembrane domain, and an extracellular region possessing six EGF-like repeats and a protease-target sequence. dlk1 functions as a modulator of adipogenesis, and other differentiation processes. The molecular mechanisms by which dlk1 regulates these processes are unclear. It has been reported that different Dlk1 mRNA spliced variants, encoding for isoforms possessing the protease-target sequence or not, determine the production of membrane-associated or soluble, secreted extracellular dlk1 proteins that appear to affect adipogenesis of 3T3-L1 cells differently. In particular, only soluble variants inhibit this process. Some recent evidence suggest that dlk1 may modulate extracellular stimuli inducing differentiation. Thus, an enforced decrease of Dlk1 expression in BALB/c 3T3 cells, which results in an increase of their adipogenic potential in response to insulin-like growth factor 1 (IGF-1), modifies the kinetics and levels of activation of ERK1/2 triggered by it. In this work, we identified a strong and specific interaction between the protease-target dlk1 region and the non-IGF binding region of IGF binding protein 1 (IGFBP1), a protein that binds to IGFs and modulates their action. We also observed that the increased adipogenic potential of 3T3-L1 cells caused by diminishing Dlk1 expression through transfection with an antisense Dlk1 expression construct was inhibited by the presence of IGFBP1 in the differentiation medium. On the other hand, the presence of IGFBP1 in the culture medium slightly increased the adipogenic potential of control 3T3-L1 cells, expressing regular levels of Dlk1. These data suggest that membrane dlk1 variants bind to extracellular IGFBP1/IGF-1 complexes, which may favor the release of IGF-1 and increase the local concentration of free IGF-1 that can enhance IGF receptor signaling, leading to adipogenesis.  相似文献   

12.
Mutations dislocate caspase-12 from the endoplasmatic reticulum to the cytosol   总被引:10,自引:0,他引:10  
Hoppe V  Hoppe J 《FEBS letters》2004,577(1-2):277-283
  相似文献   

13.
Lee  Kyeong Won  An  Young Jun  Lee  Janet  Lee  Jung-Hyun  Yim  Hyung-Soon 《Amino acids》2021,53(4):587-596

α-Poly-l-lysine (PLL) has been used for various purposes such as cell attachment, immunization, and molecular delivery, and is known to be cytotoxic to several cell lines. Here, we studied the effect of PLL on the adipogenesis of 3T3-L1 cells and investigated the underlying mechanism. Differentiation media containing PLL with a molecular weight (MW) greater than 4 kDa enhanced lipid droplet formation and increased adipogenic marker levels, indicating an increase in adipocyte differentiation. PLL with a molecular weight between 30 and 70 kDa was more effective than PLL of other sizes in 3T3-L1 cell differentiation. Moreover, PLL induced 3T3-L1 adipogenesis in insulin-free adipocyte differentiation medium. Incubation with insulin and PLL exhibited greater adipogenesis than insulin treatment only even at a high concentration. PLL stimulated insulin signaling and augmented the signaling pathway when it was added with insulin. While PLL did not activate the glucocorticoid receptor, which is phosphorylated by dexamethasone (DEX), it showed a positive effect on the cAMP signal pathway when preadipocytes were treated with PLL and 3-isobutyl-1-methylxanthine (IBMX). Consistent with these results, incubation with PLL and DEX without IBMX induced adipocyte differentiation. We also observed that the mitotic clonal expansion phase was the critical stage in adipogenesis for inducing the effects of PLL. These results suggest that PLL functions as an adipogenic inducer in 3T3-L1 preadipocytes and PLL has a direct effect on insulin signaling, one of the main regulatory pathways.

  相似文献   

14.
Stretch induces lung embryonic mesenchymal cells to follow a myogenic pathway. Using this system we identified a set of stretch-responsive factors, which we referred to as TIPs (tension-induced/inhibited proteins). TIPs displayed signature motifs characteristic of nuclear receptor coregulators and chromatin remodeling enzymes. A genomic BLAST search suggested that the three TIPs identified were isoforms originated by alternative splicing from a single gene. Functional studies revealed that TIP-1 and TIP-3 were involved in the cell's selection of the myogenic or the adipogenic pathway. TIP-1, induced by stretch, promoted myogenesis, while TIP-3, inhibited by stretch, stimulated adipogenesis. The selection involved TIP-mediated chromatin remodeling via a histone acetylation process and depended on TIP-1 and TIP-3 nuclear receptor binding boxes (NRBs). This study, therefore, suggests a new developmental mechanism linking the presence or absence of tension with divergent differentiation pathways.  相似文献   

15.
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated.  相似文献   

16.
17.
The molecular mechanisms that couple growth arrest and cell differentiation were examined during adipogenesis. Here, to understand the cyclin-dependent kinase inhibitor (CKI) genes involved in the progression of adipogenic differentiation, we examined changes in the protein and mRNA expression levels of CKI genes in vitro. During the onset of growth arrest associated with adipogenic differentiation, two independent families of CKI genes, p27Kip1 and p18INK4c, were significantly increased. The expressions of p27Kip1 and p18INK4c, regulated at the level of protein and mRNA accumulation, were directly coupled to adipogenic differentiation. This finding was supported by the inhibition of adipogenic differentiation caused by short interfering RNA (siRNA). In this study, we investigated the regulatory effects of transforming growth factor beta-1 (TGFβ-1) on CKI genes involved in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Only the up-regulation of p18INK4c during adipogenic differentiation, and not that of the p27Kip1 gene was prevented by treatment with TGFβ-1, one of the factors that inhibit adipogenesis in vitro. This finding indicates a close correlation between adipogenic differentiation and p18INK4c induction in hMSCs. Thus, these data demonstrate a role for the differentiation-dependent cascade expression of cyclin-dependent kinase inhibitors in regulating adipogenic differentiation, thereby providing a molecular mechanism that couples growth arrest and differentiation.  相似文献   

18.
19.
Macrophages and many chemokines are closely associated with the adipogenic differentiation of bone marrow mesenchymal stem cells (MSCs), but their roles in adipogenesis and the underlying mechanisms are not fully understood. Here, we first investigated the influence of macrophages on the differentiation of MSCs in vitro. We found that RAW246.7 macrophages cocultured with MSCs strongly blocked the differentiation progress and inhibited the expression of C-X-C motif chemokine ligand 1 (CXCL1) during adipogenesis. Coculture with MSCs mainly induced macrophages toward M2 polarization. In addition, the expression of CXCL1 and its receptor, C-X-C chemokine receptor type 2, CXCR2 are high during adipogenic differentiation of MSCs and not in mature adipocytes. Although CXCL1 had no effect on adipogenesis, treatment with a specific CXCR2 inhibitor, SB225002, hampered the adipogenic differentiation of MSCs. Blocking CXCR2 decreased p38 and Elk1 phosphorylation but increased the extracellular signal–regulated kinase (ERK) phosphorylation at the initial stage of adipogenesis, which suppressed the phosphorylation of p38/ERK-Elk1 at the late stage. Inhibition of ERK had similar effects on adipogenesis and Elk1 phosphorylation. Our data suggest that MSCs interact with macrophages during adipogenic differentiation. CXCR2 regulates the adipogenic differentiation of MSCs by altering the activation of the p38/ERK-Elk1 signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号