首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schmitt T  Giessl A  Seitz A 《Heredity》2002,88(1):26-34
The genetic population structure of Polyommatus coridon (Poda 1761) over large regions of France, Italy and Germany was studied by allozyme electrophoresis. The genetic diversity within populations was high for all parameters analysed (number of alleles 2.72; observed and expected heterozygosity 19.6% and 20.3%, respectively; percentage of polymorphic loci: total: 76.4% and, with polymorphism if the frequency of the commonest allele is below 95%: 53.1%), whereas genetic differentiation between populations was comparatively low (FST = 0.021 +/- 0.002). The mean number of alleles declined significantly from southern to northern populations (r = -0.53, P = 0.0005). Similar effects were found also for other parameters of genetic diversity. This is interpreted as a loss of genetic diversity during postglacial expansion. However, samples from France and Italy had similar patterns of genetic diversity indicating no significant loss in this region. Populations from southern Germany were genetically uniform, well differentiated from French populations and showed a significant loss of genetic diversity. Probably, this is due to a bottleneck during passing through the Burgundian Gap, which is a migration corridor from north-eastern France to southern Germany. In contrast to southern German populations, western German populations were not well differentiated from French populations. Nevertheless, they were genetically impoverished, probably as a result from local bottlenecks and post-expansion phenomena.  相似文献   

2.
The distribution of genetic variation within and among plant populations is influenced by both contemporary and historical factors. I used isozyme analysis of band phenotypes to examine genetic structure in the rare prairie forb Silene regia. Relationships between current-day population size, isolation, and phenotypic variation were assessed for 18 populations in two regions with differing postglacial history. Western populations from unglaciated southern Missouri and Arkansas were more genetically diverse based on the Shannon-Weaver index (H) and a polymorphic index than were more eastern populations. These differences may be due to loss of variation with repeated founding of new populations in previously glaciated sites in Indiana and Ohio. Within the western region, population size was not significantly correlated with genetic variation. In the east, size was correlated with Shannon-Weaver diversity. There was no relationship between variation and isolation in either region, but eastern populations were slightly more differentiated. Greater among-population differentiation and the demonstrated connection between population size and variation in the eastern sites may reflect lower levels of interpopulation gene flow in the fragmented remnant prairies of Indiana and Ohio.  相似文献   

3.
We describe range-wide phylogeographic variation in gray jays (Perisoreus canadensis), a boreal Nearctic corvid that occurs today primarily in recently glaciated regions. Phylogenetic analysis of mitochondrial DNA (1041 base pairs ND2 gene; N=205, 50 localities) revealed four reciprocally monophyletic groups. One widespread clade occurs across the North American boreal zone, from Newfoundland to Alaska and southwest into Utah. Three other clades occur at lower latitudes in the montane West in Colorado, the northern Rocky Mountains, and the Pacific Northwest respectively. The geographic distribution of clades in gray jays corresponds with a general pattern that is emerging for boreal taxa, having one widespread northern clade and one or more geographically restricted southwestern clades. Population genetic analyses indicate that the larger boreal clade is genetically structured and harbors significantly more genetic diversity than those clades occurring at lower latitudes. Species distribution modeling (SDM) revealed multiple putative Pleistocene refugia including several occurring at higher latitudes. We suggest that multiple post-glacial colonization routes, some of which originate from these northern refugia, are responsible for the relatively high genetic diversity at high latitudes. Conversely, lower latitude clades show little variation, probably as a result of historical restriction to smaller geographical areas with smaller long-term population sizes. This 'upside-down' pattern of genetic diversity contrasts with the conventional view that populations of north-temperate species occupying previously glaciated habitats should possess lower levels of diversity than their southern counterparts.  相似文献   

4.

Background

Quaternary climatic oscillations had dramatic effects on species evolution. In northern latitudes, populations had to survive the coldest periods in refugial areas and recurrently colonized northern regions during interglacials. Such a history usually results in a loss of genetic diversity. Populations that did not experience glaciations, in contrast, probably maintained most of their ancestral genetic diversity. These characteristics dramatically affected the present-day distribution of genetic diversity and may influence the ability of species to cope with the current global changes. We conducted a range-wide study of mitochondrial genetic diversity in the pine processionary moth (Thaumetopoea pityocampa/T. wilkinsoni complex, Notodontidae), a forest pest occurring around the Mediterranean Basin and in southern Europe. This species is responding to the current climate change by rapid natural range expansion and can also be accidentally transported by humans. Our aim was to assess if Quaternary climatic oscillations had a different effect across the species' range and to determine if genetic footprints of contemporary processes can be identified in areas of recent introduction.

Results

We identified three main clades that were spatially structured. In most of Europe, the genetic diversity pattern was typical for species that experienced marked glaciation cycles. Except in refugia, European populations were characterized by the occurrence of one main haplotype and by a strong reduction in genetic diversity, which is expected in regions that were rapidly re-colonized when climatic conditions improved. In contrast, all other sub-clades around the Mediterranean Basin occurred in limited parts of the range and were strongly structured in space, as is expected in regions in which the impact of glaciations was limited. In such places, genetic diversity was retained in most populations, and almost all haplotypes were endemic. This pattern was extreme on remote Mediterranean islands (Crete, Cyprus, Corsica) where highly differentiated, endemic haplotypes were found. Recent introductions were typified by the existence of closely-related haplotypes in geographically distant populations, which is difficult to detect in most of Europe because of a lack of overall genetic structure.

Conclusion

In regions that were not prone to marked glaciations, recent moth introductions/expansions could be detected due to the existence of a strong spatial genetic structure. In contrast, in regions that experienced the most intense Quaternary climatic oscillations, the natural populations are not genetically structured, and contemporary patterns of population expansion remain undetected.  相似文献   

5.
Setaria glauca (yellow foxtail), S. geniculata (knotroot foxtail), and S. faberii (giant foxtail) are important cosmopolitan weeds of temperate and tropical regions. Isozyme markers were used to investigate genetic diversity and population genetic structure in 94 accessions of yellow foxtail, 24 accessions of knotroot foxtail, and 51 accessions of giant foxtail, collected mainly from North America and Eurasia. Giant foxtail populations were nearly identical genetically, with only one population exhibiting isozyme polymorphism. Yellow and knotroot foxtail populations had low genetic diversity but marked population differentiation. Although the latter species are similar morphologically, they are readily distinguished electrophoretically, with Nei's genetic identity being 0.83. In both species, genetic divergence between accessions from Eurasia and North America was minimal. Populations from the native ranges had slightly greater genetic diversity than those from the respective introduced ranges. Yellow foxtail populations genetically clustered into Asian, European, and North American groups. Within North America, yellow foxtail populations from Iowa were genetically diverse whereas populations collected from other North American locations were nearly monomorphic for the same multilocus genotype. Knotroot foxtail populations in North America were genetically differentiated into northern and southern groups on either side of a line at ≈37° N latitude. No genetic patterning was evident in knotroot foxtail populations from Eurasia. In both yellow and knotroot foxtail, patterns of population genetic structure have been influenced by several factors, including genetic bottlenecks associated with founder events, genetic drift, and natural selection.  相似文献   

6.
We conducted a large‐scale population genetic survey of genetic diversity of the host grass Festuca rubra s.l., which fitness can be highly dependent on its symbiotic fungus Epichloë festucae, to evaluate genetic variation and population structure across the European range. The 27 studied populations have previously been found to differ in frequencies of occurrence of the symbiotic fungus E. festucae and ploidy levels. As predicted, we found decreased genetic diversity in previously glaciated areas in comparison with nonglaciated regions and discovered three major maternal genetic groups: southern, northeastern, and northwestern Europe. Interestingly, host populations from Greenland were genetically similar to those from the Faroe Islands and Iceland, suggesting gene flow also between those areas. The level of variation among populations within regions is evidently highly dependent on the postglacial colonization history, in particular on the number of independent long‐distance seed colonization events. Yet, also anthropogenic effects may have affected the population structure in F. rubra. We did not observe higher fungal infection rates in grass populations with lower levels of genetic variability. In fact, the fungal infection rates of E. festucae in relation to genetic variability of the host populations varied widely among geographical areas, which indicate differences in population histories due to colonization events and possible costs of systemic fungi in harsh environmental conditions. We found that the plants of different ploidy levels are genetically closely related within geographic areas indicating independent formation of polyploids in different maternal lineages.  相似文献   

7.
This study tested whether low genetic diversity in remnant populations of a declining amphibian is best explained by recent bottlenecks or by a history of being peripheral. We compared diversity from eight microsatellite loci in historical and extant populations from the interior and former periphery of the species' range. We found that historic peripheral populations already had reduced levels of genetic variation before the range contraction. Therefore, low diversity in remnants could not be ascribed to recent range contractions. This study shows that a common conservation strategy for rescuing genetically depauperate populations, artificial gene flow, may often be unwarranted and detrimental to evolutionarily important peripheral populations.  相似文献   

8.
The processes that produce and maintain genetic structure in organisms operate at different timescales and on different life‐history stages. In marine macroalgae, gene flow occurs through gamete/zygote dispersal and rafting by adult thalli. Population genetic patterns arise from this contemporary gene flow interacting with historical processes. We analyzed spatial patterns of mitochondrial DNA variation to investigate contemporary and historical dispersal patterns in the New Zealand endemic fucalean brown alga Carpophyllum maschalocarpum (Turner) Grev. Populations bounded by habitat discontinuities were often strongly differentiated from adjoining populations over scales of tens of kilometers and intrapopulation diversity was generally low, except for one region of northeast New Zealand (the Bay of Plenty). There was evidence of strong connectivity between the northern and eastern regions of New Zealand’s North Island and between the North and South Islands of New Zealand and the Chatham Islands (separated by 650 km of open ocean). Moderate haplotypic diversity was found in Chatham Islands populations, while other southern populations showed low diversity consistent with Last Glacial Maximum (LGM) retreat and subsequent recolonization. We suggest that ocean current patterns and prevailing westerly winds facilitate long‐distance dispersal by floating adult thalli, decoupling genetic differentiation of Chatham Island populations from dispersal potential at the gamete/zygote stage. This study highlights the importance of encompassing the entire range of a species when inferring dispersal patterns from genetic differentiation, as realized dispersal distances can be contingent on local or regional oceanographic and historical processes.  相似文献   

9.
Repeated population bottlenecks can lead to loss of genetic variation and normally should be avoided in threatened species to preserve evolutionary potential. We examined the effect of repeated bottlenecks, in the form of sequential translocations, on loss of genetic variation in a threatened passerine, the saddleback (Philesturnus carunculatus carunculatus), a species that has recovered from a remnant population with historically low levels of genetic variation. Although a slight but nonsignificant loss of alleles may have occurred between the first-order translocation and the extirpated source population, first-, second-, and third-order translocated populations had very similar levels of genetic variation to each other. The most obvious difference among the seven island populations appeared to lie in allele frequencies with little or no loss of alleles among extant populations. Although sequential translocations are known to cause loss of variation in genetically diverse species, our study indicates that genetically depauperate species may be less sensitive to loss of genetic variation through founder events presumably because the few remaining alleles are well represented in founding individuals. These results show that ancient bottlenecks may have a long-term effect on genetic variation, to the extent that contemporary population bottlenecks may leave no appreciable genetic signature. Our results suggest that subjecting genetically depauperate endangered species to sequential translocations could be used to rapidly establish new populations without further eroding genetic variation.  相似文献   

10.
Aim  This study aims to assess the role of long-distance seed dispersal and topographic barriers in the post-glacial colonization of red maple ( Acer rubrum L.) using chloroplast DNA (cpDNA) variation, and to understand whether this explains the relatively higher northern diversity found in eastern North American tree species compared with that in Europe.
Location  North-eastern United States.
Methods  The distribution of intraspecific cpDNA variation in temperate tree populations has been used to identify aspects of post-glacial population spread, including topographic barriers to population expansion and spread by long-distance seed dispersal. We sequenced c.  370 cpDNA base pairs from 221 individuals in 100 populations throughout the north-eastern United States, and analysed spatial patterns of diversity and differentiation.
Results  Red maple has high genetic diversity near its northern range limit, but this diversity is not partitioned by topographic barriers, suggesting that the northern Appalachian Mountains were not a barrier to the colonization of red maple. We also found no evidence of the patchy genetic structure that has been associated with spread by rare long-distance seed dispersal in previous studies.
Main conclusions  Constraints on post-glacial colonization in eastern North America seem to have been less stringent than those in northern Europe, where bottlenecks arising from long-distance colonization and topographic barriers appear to have strongly reduced genetic diversity. In eastern North America, high northern genetic diversity may have been maintained by a combination of frequent long-distance dispersal, minor topographic obstacles and diffuse northern refugia near the ice sheet.  相似文献   

11.
Freshwater darters belonging to the orangethroat darter species complex, or Ceasia, are widely distributed in the Central and Southern United States, with ranges that span both glaciated and unglaciated regions. Up to 15 species have been recognized in the complex, with one, Etheostoma spectabile, having a widespread northern distribution and another, Etheostoma pulchellum, having a sizeable southern distribution. The other species in the complex have much more restricted distributions in unglaciated regions of the Central Highlands. We sampled 384 darters from 52 sites covering much of the range of Ceasia and evaluated patterns of genetic diversity, genetic structure, and pre- and post-glacial patterns of range contraction and expansion. We anticipated finding much stronger signals of genetic differentiation and diversification in unglaciated regions, given the higher species diversity and levels of endemism reported there. Surprisingly, microsatellite genotyping revealed two well-differentiated genetic clusters of E. spectabile in samples from glaciated regions, one confined to the Illinois River basin and another found in the Wabash drainage and Great Lakes tributaries. This suggests that there was expansion from two isolated glacial refugia, with little subsequent post-glacial gene flow. Fish collected from throughout the unglaciated region were less genetically differentiated. Fish assigned to Etheostoma burri and Etheostoma uniporum based on collection sites and morphological characters were not genetically differentiated from E. spectabile samples from the region. Hybridization and introgression occurring in the Central Highlands may confound genetic delineation of species in this region of high endemism and diversity.  相似文献   

12.
Aim We examined the genetic structure of Quercus garryana to infer post‐glacial patterns of seed dispersal and pollen flow to test the hypotheses that (1) peripheral populations are genetically distinct from core populations and from one another; (2) genetic diversity declines towards the poleward edge of the species’ range; and (3) genetic diversity in the chloroplast genome, a direct measure of seed dispersal patterns, declines more sharply with increasing latitude than diversity in the nuclear genome. We address our findings in the context of known historical oak distribution from pollen core data derived from previously published research. Location Oak–savanna ecosystems from southern Oregon, USA (core populations/non‐glaciated range) northward to Vancouver Island, British Columbia, Canada (peripheral populations/glaciated range). Methods We genotyped 378 trees from 22 sites with five chloroplast and seven nuclear microsatellite loci. For both sets of markers, we estimated genetic diversity and differentiation using an analysis of molecular variance and generated Mantel correlograms to detect genetic and geographical distance correlations. For the nuclear markers, we also used a Bayesian approach to infer population substructure. Results There was a large degree of population differentiation revealed by six chloroplast haplotypes, with little (≤ 3) or no haplotype diversity within sites. Peripheral island locations shared the same, maternally inherited chloroplast haplotype, whereas locations in mainland Washington had greater haplotype diversity. In contrast, genetic diversity of the nuclear markers was high at all locations sampled. Populations clustered into two groups and were significantly positively correlated over large spatial scales (≤ 200 km), although allele richness decreased significantly with latitude. Population substructure was observed between core and peripheral populations because rare alleles were absent in peripheral localities and common allele frequencies differed. Main conclusions The observed pattern of chloroplast haplotype loss at the northern periphery suggests restricted seed dispersal events from mainland sites to peripheral islands. This pattern was unexpected, however, as refugial oak populations remained near the current post‐glacial range even during the Last Glacial Maximum. Using nuclear markers, we found high within‐population diversity and population differentiation only over large spatial scales, suggesting that pollen flow is relatively high among populations.  相似文献   

13.
Femeniasia balearica is the only representative of its genus and is endemic to a small area on the northern coast of Minorca (Balearic Islands, Spain). The entire range of the species covers only 18 km of coastline. It is extremely rare and classified as endangered in the National Catalogue of Threatened Species and as a priority species in the EU Habitats Directive. We carried out a census of current population size and estimated genetic diversity based on AFLP markers to facilitate conservation of this unique species. In the 66 individuals analysed (∼10% of population), 225 bands were scored and the level of diversity was relatively high. Three divergent population groups corresponding to geographical areas (Western, Central and Eastern) were identified. In AMOVA and Bayesian analyses, most of the diversity was found within populations but there was strong differentiation between the three population groups. Genetic and geographical distances between the populations were strongly correlated. Our results show that the populations of F. balearica are not genetically depauperate, in spite of their small sizes. Unexpectedly, our results suggest that as many as three MUs (management units) should be recognized in this very small area, because the low levels of gene flow among them indicate contemporary demographic independence.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 97–107.  相似文献   

14.
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.  相似文献   

15.
With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.  相似文献   

16.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

17.
Beringia is considered as an important glacial refugium that served as the main source for colonization of formerly glaciated Arctic regions. To obtain high resolution views of Arctic refugial history, we examined mitochondrial cytochrome b phylogeography in the northern genus of rodents, Lemmus (true lemmings), sampled across its circumpolar distribution. Strong phylogeographical structure suggests vicariant separation over several glacial-interglacial periods and does not provide evidence supporting the importance of Beringia for extensive colonization of formerly glaciated regions. Rather than a source of postglacial colonization, Beringia represents an area of intraspecific endemism previously undetected by biogeographical analysis. Existing phylogeographical structure suggests that vicariant separation by glacial barriers was an important factor generating genetic divergence and, thus, increasing genetic diversity in lemmings on continental and circumpolar scales. However, there is little evidence for the direct effect of the last glaciation on the level of genetic variation and allele genealogy in lemmings on a regional geographical scale. This finding implies that the population genetic models of postglacial colonization suggested for temperate taxa might have limited applicability for Arctic species.  相似文献   

18.
Given that East Asia is located south‐west of Beringia and was less glaciated during the Pleistocene, species at higher latitudes were able to expand their range in this region during climate cooling. Although southward migration is an inevitable colonization process, the biogeographical history of the disjunct ranges of higher‐latitude species in East Asia has been investigated less extensively. Here, we assess whether their disjunct distributions in the Japanese archipelago connected sufficiently with Beringia or persisted in isolation following their establishment. Sequences of nine nuclear loci were determined for Cassiope lycopodioides (Ericaceae) from the Japanese archipelago as well as its surrounding areas, Kamchatka and Alaska. According to the geographical pattern of genetic diversity, the northern populations from Kamchatka to the northern part of the Japanese archipelago were similar genetically and were differentiated from populations in central Japan. Our study suggested that the distribution of C. lycopodioides was connected between the northern part of the Japanese archipelago and south‐western Beringia due to Pleistocene climate cooling. Conversely, central Japan harboured a disjunct range after its establishment. These inferences suggest that widespread range expansion in northern East Asia was plausible for species distributed in Beringia. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 497–509.  相似文献   

19.
Geographically peripheral populations are expected to exhibit lower genetic diversity and higher differentiation than central populations because of their smaller size and greater spatial isolation. In plants, a shift from sexual to clonal asexual reproduction may further reduce diversity and increase differentiation. Here, these predictions were tested by assaying 36 inter-simple sequence repeat (ISSR) polymorphisms in 21 populations of the woody, clonal plant Vaccinium stamineum in eastern North America, from the range center to its northern limit where it has 'threatened' status. Populations decline in frequency, but not size or sexual reproductive output, across the range. Within-population diversity did not decline towards range margins. Modest genetic differentiation among populations increased slightly towards range margins and in small populations with high clonal propagation and low seed production, although none of these trends was significant. Low seed production and high clonal propagation were not associated with large-scale clonal spread. By combining demographic and genetic data, this study determined that increased population isolation, rather than reduced population size, can account for the weak increase in genetic differentiation at range margins.  相似文献   

20.
Variation in presumably neutral genetic markers can inform us about evolvability, historical effective population sizes and phylogeographic history of contemporary populations. We studied genetic variability in 15 microsatellite loci in six native landlocked Arctic charr (Salvelinus alpinus) populations in northern Fennoscandia, where this species is considered near threatened. We discovered that all populations were genetically highly (mean F ST ≈ 0.26) differentiated and isolated from each other. Evidence was found for historical, but not for recent population size bottlenecks. Estimates of contemporary effective population size (N e) ranged from seven to 228 and were significantly correlated with those of historical N e but not with lake size. A census size (N C) was estimated to be approximately 300 individuals in a pond (0.14 ha), which exhibited the smallest N e (i.e. N e/N C = 0.02). Genetic variability in this pond and a connected lake is severely reduced, and both genetic and empirical estimates of migration rates indicate a lack of gene flow between them. Hence, albeit currently thriving, some northern Fennoscandian populations appear to be vulnerable to further loss of genetic variability and are likely to have limited capacity to adapt if selection pressures change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号