首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.  相似文献   

2.
A critical review of the data available in the literature today permits a better understanding of the multiple actions of atrial natriuretic peptide (ANP) on the cardiovascular system. Moreover, the results of chronobiological studies suggest a role for this peptide in the determination of the circadian rhythm of blood pressure (BP). ANP can affect BP by several mechanisms, including modification of renal function and vascular tone, counteraction of the renin-angiotensin-al-dosterone system, and action on brain regulatory sites. A series of interrelated events may follow from very small changes in the plasma levels of ANP. The endpoints are blood volume and BP reduction, but they are rapidly offset (mainly by reactive sympathetic activation) as soon as blood volume or pressure is thredtened. The circadian rhythms of BP and ANP are antiphasic under normal conditions and in essential hypertension. The loss in the nocturnal decrease of BP is accompanied by a comparable loss in the nocturnal surge of ANP in hypertensive renal failure and hypotensive heart failure. In the latter condition, BP and ANP variabilities correlate significantly both before and after therapy-induced functional recovery, independently of the mean BP levels. Autonomic function modulates the secretion of ANP, which seems more apt to determine only transient changes in BP levels, as suggested by the short half-life of the peptide and the buffering role of its clearance receptors. There is now sufficient evidence that ANP contributes to short-term control over BP and electrolyte balance, in contrast and in opposition to the renin-angiotensin-aldosterone system, which is involved primarily in long-term BP control. By interfering with other well-established neu-rohormonal factors, ANP appears to be an additional modulator of the circadian rhythm of BP.  相似文献   

3.
I Baskakov  A Wang    D W Bolen 《Biophysical journal》1998,74(5):2666-2673
Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two solutes. Rabbit muscle lactate dehydrogenase (LDH) did not evolve in the presence of either solute, and it is used here to test the validity of the counteraction hypothesis. With pyruvate as substrate, results show that its Km and the combined Km of pyruvate and NADH are increased by urea, decreased by TMAO, and in 1:1 and 2:1 mixtures of urea:TMAO the Km values are essentially equivalent to the Km values obtained in the absence of the two solutes. In contrast, values of k(cat) and the Km for NADH as a substrate are unperturbed by urea, TMAO, or urea:TMAO mixtures. All of these effects are consistent with TMAO counteraction of the effects of urea on LDH kinetic parameters, supporting the premise that counteraction is a property of the solvent system and is independent of the evolutionary history of the protein.  相似文献   

4.
A novel phenomenon of protective counteraction by thyroid hormone has been demonstrated in phenylhydrazine hydrochloride (PHH) induced insult on blood acetylcholinesterase (AChE, EC 3.1.1.7) activity, in both, in vivo and in vitro conditions. Injection of PHH (20 microg/g) to juvenile male rats for three consecutive days caused a 48% decrease (p < 0.001) in the total blood AChE activity on the third day (i.e. 24 h after injections for three consecutive days) in comparison to the control animals. Simultaneous injections of thyroxine (T4) 1 or 2 microg/g with PHH (20 microg/g) showed a recovery in AChE activity by 27% (p < 0.02) and 55% (p < 0.001), respectively, in comparison to the only PHH-injected animals. T4 at 1, 2 and 4 microg/g doses showed unchanged levels in comparison to the untreated controls. In our in vitro system, incubations of the RBCs in PHH (2 mM) containing medium also showed an inhibition of 44% (p < 0.001) of the RBC membrane AChE activity in comparison to the control conditions. A recovery of 23-81% of the enzyme activity was observed after simultaneous use of T4 (1 nM-100 nM) or T3 (0.1 nM-100 nM), or triiodothyroacetic acid (TRIAC) (100 nM) with PHH (2 mM) in a dose-dependent manner with a potency profile of T3 > T4 > TRIAC. Incubation of RBCs only with T4, T3, or TRIAC at 0.1-100 nM concentration did not cause any alteration in the membrane AChE activity in comparison to control conditions. Thus, thyroid hormone distinctly demonstrated a counteraction or protective nature of action on the PHH-induced inhibition of total blood and RBC membrane AChE activity.  相似文献   

5.
Sensing viruses by pattern recognition receptors (PRR) triggers the innate immune system of the host cell and activates immune signaling cascades such as the RIG-I/IRF3 pathway. Mitochondrial antiviral-signaling protein (MAVS, also known as IPS-1, Cardif, and VISA) is the crucial adaptor protein of this pathway localized on mitochondria, peroxisomes and mitochondria-associated membranes of the endoplasmic reticulum. Activation of MAVS leads to the production of type I and type III interferons (IFN) as well as IFN stimulated genes (ISGs). To refine the role of MAVS subcellular localization for the induction of type I and III IFN responses in hepatocytes and its counteraction by the hepatitis C virus (HCV), we generated various functional and genetic knock-out cell systems that were reconstituted to express mitochondrial (mito) or peroxisomal (pex) MAVS, exclusively. Upon infection with diverse RNA viruses we found that cells exclusively expressing pexMAVS mounted sustained expression of type I and III IFNs to levels comparable to cells exclusively expressing mitoMAVS. To determine whether viral counteraction of MAVS is affected by its subcellular localization we employed infection of cells with HCV, a major causative agent of chronic liver disease with a high propensity to establish persistence. This virus efficiently cleaves MAVS via a viral protease residing in its nonstructural protein 3 (NS3) and this strategy is thought to contribute to the high persistence of this virus. We found that both mito- and pexMAVS were efficiently cleaved by NS3 and this cleavage was required to suppress activation of the IFN response. Taken together, our findings indicate comparable activation of the IFN response by pex- and mitoMAVS in hepatocytes and efficient counteraction of both MAVS species by the HCV NS3 protease.  相似文献   

6.
The hypothesis was tested that low-frequency vasomotions in individual vascular beds are integrated by the cardiovascular system, such that new fluctuations at additional frequencies occur in arterial blood pressure. In anesthetized rats (n = 8), the sympathetic splanchnic and renal nerves were simultaneously stimulated at combinations of frequencies ranging from 0.075 to 0.8 Hz. Blood pressure was recorded together with mesenteric and renal blood flow velocities. Dual nerve stimulation at low frequencies (<0.6 Hz) caused corresponding oscillations in vascular resistance and blood pressure, whereas higher stimulation frequencies increased the mean levels. Blood pressure oscillations were only detected at the individual stimulation frequencies and their harmonics. The strongest periodic responses in vascular resistance were found at 0.40 +/- 0.02 Hz in the mesenteric and at 0.32 +/- 0.03 Hz (P < 0.05) in the renal vascular bed. Thus frequency modulation of low-frequency vasomotions in individual vascular beds does not cause significant blood pressure oscillations at additional frequencies. Furthermore, our data suggest that sympathetic modulation of mesenteric vascular resistance can initiate blood pressure oscillations at slightly higher frequencies than sympathetic modulation of renal vascular resistance.  相似文献   

7.
In this study, we attempted to assess the incorporable potential of vascular endothelial cells derived from adult organ blood vessels into tumor blood vessels. Two kinds of adult organ-derived vascular endothelial cells, human aorta endothelial cells (HAEC) and umbilical vein endothelial cells (HUVEC), were administered into murine tumors inoculated to SCID mice. Many human blood vessel networks were visualized in the murine tumors. These cells in solid tumor not only survived and proliferated, but also incorporated into tumor endothelium. These results suggest that adult organ-derived vascular endothelial cells possess the potential to form the neovascular network in various tissues such as vascular endothelial progenitor-like cells in vivo. We propose that these cells can be regarded as a congenic (autologous) vector for vascular regeneration cell therapy and tumor vascular targeting gene therapy.  相似文献   

8.
Formation of a functional vasculature during mammalian development is essential for embryonic survival. In addition, imbalance in blood vessel growth contributes to the pathogenesis of numerous disorders. Most of our understanding of vascular development and blood vessel growth comes from investigating the Vegf signaling pathway as well as the recent observation that molecules involved in axon guidance also regulate vascular patterning. In order to take an unbiased, yet focused, approach to identify novel genes regulating vascular development, we performed a three-step ENU mutagenesis screen in zebrafish. We first screened live embryos visually, evaluating blood flow in the main trunk vessels, which form by vasculogenesis, and the intersomitic vessels, which form by angiogenesis. Embryos that displayed reduced or absent circulation were fixed and stained for endogenous alkaline phosphatase activity to reveal blood vessel morphology. All putative mutants were then crossed into the Tg(flk1:EGFP)(s843) transgenic background to facilitate detailed examination of endothelial cells in live and fixed embryos. We screened 4015 genomes and identified 30 mutations affecting various aspects of vascular development. Specifically, we identified 3 genes (or loci) that regulate the specification and/or differentiation of endothelial cells, 8 genes that regulate vascular tube and lumen formation, 8 genes that regulate vascular patterning, and 11 genes that regulate vascular remodeling, integrity and maintenance. Only 4 of these genes had previously been associated with vascular development in zebrafish illustrating the value of this focused screen. The analysis of the newly defined loci should lead to a greater understanding of vascular development and possibly provide new drug targets to treat the numerous pathologies associated with dysregulated blood vessel growth.  相似文献   

9.
Cadmium (Cd) is one of the most important environmental pollutants that cause a number of adverse health effects in humans and animals. Recent studies have shown that Cd-induced oxidative damage within the vascular tissues results in vascular dysfunction. The current study was aimed to investigate whether ascorbic acid could protect against Cd-induced vascular dysfunction in mice. Male ICR mice were received CdCl2 (100 mg/l) via drinking water for 8 weeks alone or received ascorbic acid supplementation at doses of 50 and 100 mg/kg/day for every other day. Results showed that Cd administration increased arterial blood pressure and blunted the vascular responses to vasoactive agents. These alterations were related to increased superoxide production in thoracic aorta, increased urinary nitrate/nitrite, increased plasma protein carbonyl, elevated malondialdehyde (MDA) concentrations in plasma and tissues, decreased blood glutathione (GSH), and increased Cd contents in blood and tissues. Ascorbic acid dose-dependently normalized the blood pressure, improved vascular reactivities to acetylcholine (ACh), phenylephrine (Phe) and sodium nitroprusside (SNP). These improvements were associated with significant suppression of oxidant formation, prevention of GSH depletion, and partial reduction of Cd contents in blood and tissues. The findings in this study provide the first evidence in pharmacological effects of ascorbic acid on alleviation of oxidative damage and improvement of vascular function in a mouse model of Cd-induced hypertension and vascular dysfunction. Moreover, our study suggests that dietary supplementation of ascorbic acid may provide beneficial effects by reversing the oxidative stress and vascular dysfunction in Cd-induced toxicity.  相似文献   

10.
CD39 is an ectoenzyme, present on different immune cell subsets, which mediates immunosuppressive functions catalyzing ATP degradation. It is not known whether CD39 is expressed and implicated in the activity of CD8+ regulatory T lymphocytes (Treg). In this study, CD39 expression and function was analyzed in both CD8+ and CD4+CD25hi Treg from the peripheral blood of healthy donors as well as from tumor specimens. CD39 was found expressed by both CD8+ (from the majority of healthy donors and tumor patients) and CD4+CD25hi Treg, and CD39 expression correlated with suppression activity mediated by CD8+ Treg. Importantly, CD39 counteraction remarkably inhibited the suppression activity of CD8+ Treg (both from peripheral blood and tumor microenvironment) suggesting that CD39-mediated inhibition constitutes a prevalent hallmark of their function. Collectively, these findings, unveiling a new mechanism of action for CD8+ Treg, provide new knowledge on intratumoral molecular pathways related to tumor immune escape, which could be exploited in the future for designing new biological tools for anticancer immune intervention.  相似文献   

11.
The fetal llama responds to hypoxemia, with a marked peripheral vasoconstriction but, unlike the sheep, with little or no increase in cerebral blood flow. We tested the hypothesis that the role of nitric oxide (NO) may be increased during hypoxemia in this species, to counterbalance a strong vasoconstrictor effect. Ten fetal llamas were operated under general anesthesia. Mean arterial pressure (MAP), heart rate, cardiac output, total vascular resistance, blood flows, and vascular resistances in cerebral, carotid and femoral vascular beds were determined. Two groups were studied, one with nitric oxide synthase (NOS) blocker N(G)-nitro-L-arginine methyl ester (L-NAME), and the other with 0.9% NaCl (control group), during normoxemia, hypoxemia, and recovery. During normoxemia, L-NAME produced an increase in fetal MAP and a rapid bradycardia. Cerebral, carotid, and femoral vascular resistance increased and blood flow decreased to carotid and femoral beds, while cerebral blood flow did not change significantly. However, during hypoxemia cerebral and carotid vascular resistance fell by 44% from its value in normoxemia after L-NAME, although femoral vascular resistance progressively increased and remained high during recovery. We conclude that in the llama fetus: 1) NO has an important role in maintaining a vasodilator tone during both normoxemia and hypoxemia in cerebral and femoral vascular beds and 2) during hypoxemia, NOS blockade unmasked the action of other vasodilator agents that contribute, with nitric oxide, to preserving blood flow and oxygen delivery to the tissues.  相似文献   

12.
13.
The capillary filtration coefficient (Kf,c) is a sensitive and specific index of vascular permeability if surface area remains constant, but derecruitment might affect Kf,c in severely damaged lungs with high vascular resistance. We studied the effect of high and low blood flow rates on Kf,c in papaverine-pretreated blood-perfused isolated dog lungs perfused under zone 3 conditions with and without paraquat (PQ, 10(-2) M). Three Kf,cs were measured successively at hourly intervals for 5 h. These progressed sequentially from isogravimetric blood flow with low vascular pressure (I/L) to high flow with low vascular pressure (H/L) to high flow with high vascular pressure (H/H). The blood flows of H/L and H/H were greater than or equal to 1.5 times that of I/L. There were no significant changes in Kf,c in lungs without paraquat over a 50-fold range of blood flow rates. At 3 h after PQ, I/L-Kf,c was significantly increased and both isogravimetric capillary pressure and total protein reflection coefficient were decreased from base line. At 4 and 5 h, H/L-Kf,c was significantly greater than the corresponding I/L-Kf,c (1.01 +/- 0.22 vs. 0.69 +/- 0.09 and 1.26 +/- 0.19 vs. 0.79 +/- 0.10 ml.min-1.cmH2O-1.100 g-1, respectively) and isogravimetric blood flow decreased to 32.0 and 12.0% of base line, respectively. Pulmonary vascular resistance increased to 12 times base line at 5 h after PQ. We conclude that Kf,c is independent of blood flow in uninjured lungs. However, Kf,c measured at isogravimetric blood flow underestimated the degree of increase in Kf,c in severely damaged and edematous lungs because of a high vascular resistance and derecruitment of filtering surface area.  相似文献   

14.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

15.
Genesis and pathogenesis of lymphatic vessels   总被引:1,自引:0,他引:1  
The lymphatic system is generally regarded as supplementary to the blood vascular system, in that it transports interstitial fluid, macromolecules, and immune cells back into the blood. However, in insects, the open hemolymphatic (or lymphohematic) system ensures the circulation of immune cells and interstitial fluid through the body. The Drosophila homolog of the mammalian vascular endothelial growth factor receptor (VEGFR) gene family is expressed in hemocytes, suggesting a close relationship to the endothelium that develops later in phylogeny. Lymph hearts are typical organs for the propulsion of lymph in lower vertebrates and are still transiently present in birds. The lymphatic endothelial marker VEGFR-3 is transiently expressed in embryonic blood vessels and is crucial for their development. We therefore regard the question of whether the blood vascular system or the lymphatic system is primary or secondary as open. Future molecular comparisons should be performed without any bias based on the current prevalence of the blood vascular system over the lymphatic system. Here, we give an overview of the structure, function, and development of the lymphatics, with special emphasis on the recently discovered lymphangiogenic growth factors.  相似文献   

16.
微血管密度异常、血管生长因子(VEGF、PDGF等)及其受体表达异常通过一系列级联反应导致血管异常生长的结果。众多因子均和血管形成有关,在妊娠过程中对胎盘的血管发育有着重要的作用,导致滋养细胞的表型转换障碍、血管结构发育不良、血管生成受阻、血管数目减少,引起胎盘血管重铸障碍,胎儿胎盘单位灌注不足发生流产。研究表明许多自然流产的发生与胎盘组织中血管增生平衡和胎儿血液供应不足有密切关系,从而认为血管生长异常是导致流产的又一重要因素。随着研究的深入进展血管的异常生长与流产的关系是有确定关系的,对于血管生长异常所致的流产,抑制血管各种血管因子的形成、阻止其与受体结合,从而抑制血管的异常生长最终达到克服流产的发展,无异于把幸福带给更多的家庭,不仅是妇产科发展的里程碑,更是人类医学发展史上光辉的一笔。  相似文献   

17.
A comparison was made of the effect of prostaglandin synthesis inhibitors (PGSI) on systemic blood pressure and hindlimb muscle vascular resistance of anesthetized dogs under different experimental conditions. When muscle blood flow was monitored using an extracorporeal or noncannulating electromagnetic blood flow probe, indomethacin (5 mg/kg i.v.) increased blood pressure slightly, but did not change vascular resistance. Administration of PGSI (indomethacin, meclofenamate, or naproxen, 5 mg/kg i.v.) after 2 hr of pump perfusion of the hindlimb caused a 22% increase in blood pressure, and 39% increase in vascular resistance 30 min afterwards. When administered immediately after instituting pump perfusion, indomethacin caused no significant change in blood pressure or vascular resistance at the 30 min interval, but at 60 min vascular resistance was increased. A similar vasoconstrictor response to indomethacin was obtained when it was infused in a lower dose intraarterially to the hindlimb, or when given i.v. after ligation of the renal pedicles. The results indicate that pump perfusion results in elaboration of a nonrenal prostaglandin(s) which maintains a vasodilator influence on the skeletal muscle vascular bed.  相似文献   

18.
Considerable attention is being given to the interactions that occur among blood platelets, neutrophils, and the vascular endothelium. There is an increasing awareness that the various blood elements interact in the process of thrombus formation and vascular occlusion. In addition, interactions among these cells can lead to the formation and release of vasoactive substances that have the potential to modulate regional blood flow. This review focuses on the coronary vascular bed and an assessment of how cell-cell interactions, under normal physiological conditions as well as in the presence of myocardial injury, may lead to alterations in coronary vascular resistance and myocardial function. Should related events be operative in human clinical states of disease, the circulating elements of the blood may serve as targets in the development of therapeutic interventions to regulate myocardial blood flow.  相似文献   

19.
By means of ultrasonic method, used in acute experiments on cats with closed abdominal cavity under nembutal narcosis, the authors studied the linear and volumetric blood flow velocity in left phrenic artery, the resistance of vascular bed of the phrenic artery, systemic blood pressure, respiration excursions during asphyxia, hypoxia, infusion of some biologically active substances. It was shown, that shortening of the diaphragm has definite influence on the blood flow and resistance of the vascular bed of the phrenic artery; the degree of the decrease of the blood flow in inspiration (on relation to the value of the blood flow in expiration, that passed as 100%) does not differ significantly in quiet and intensive respiration. Under the influences, the resistance of vascular bed of the phrenic artery decreases, the linear and volumetric blood flow increases, that indicates large reserve of the vascular bed of the phrenic artery for the increase of the blood flow.  相似文献   

20.
血管活动的个性化   总被引:4,自引:0,他引:4  
机体内不同部位的血管功能活动均具有各自独特的性质,称为血管的个性,主要表现为不同器官或区域的血管对同一刺激的反应不尽相同,甚至截然相反。血管的这种生理学特征保证了血管能在不同部位与不同机能状态下作出不同反应,巧妙地完成血液循环系统的功能,满足机体不同部位的血供需要。血管活动的个性化是血管生理学中的一个重要问题,对这一问题的研究将有助于阐明血管活动的客观规律,对研究血管疾病的发生与发展也具有重要意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号