首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that sound wave treatment can affect the expression of plant genes and improve the growth. So, we investigated the ability of sound waves to increase AsA (l-ascorbic acid) content in alfalfa (Medicago sativa) sprouts in this study. Sprouts were exposed to a range of sound wave frequencies for two 1-h periods per day for various numbers of days. Most sound wave treated sprouts had a higher AsA content than untreated sprouts. In addition, the activity level of superoxide dismutase, an enzyme with potent antioxidative properties, was increased in sound wave-treated sprouts. The AsA content varied in response to sound wave treatment. Most processing conditions, including 500 and 1000 Hz, increased AsA content by 24–50%; however, some treatment conditions caused reduced AsA content during sprout growth. Furthermore, AsA content during sprout storage was increased by most sound wave treatment conditions, with 13–36% increases observed following 800 and 1000 Hz sound wave treatments compared to untreated sprouts. To investigate the mechanisms underlying changes in AsA content, we analyzed the expression levels of AsA biosynthesis-related genes. We found that several genes, including VTC1, VTC2, VTC4, GME, L-GalDH, GLDH, MDHAR, and DHAR1, displayed differential expression in response to sound wave treatment. Therefore, sound wave treatment may be a viable method for increasing the nutritional contents of sprouted vegetables.  相似文献   

2.
The characteristics of a subjective sound field formed under conditions of dichotic stimulation were studied in healthy subjects (six females and seven males) with normal auditory sensitivity upon movement of a sound image (SI) in different directions. The character and the trajectory values of the emerging subjective sound image (SSI) were determined depending on the direction of its motion and the initial interaural delay (700, 400, and 200 s). Certain differences in the assessment of the parameters of moving sound images between the groups of male and female subjects were revealed. In female subjects, the averaged trajectory values in the right and left hemispheres were the same when the SSI moved in both directions and shortened uniformly with a decrease in the initial interaural delay. With a 700-s delay, the trajectory values of the male subjects for all directions of motion of the SSI were the same as those of female subjects. With initial 400- and 200-s delays, the trajectory values were significantly greater in the group of male subjects if a SI moved from the right or left ear to the median line of the head. With the method used, no interhemispheric asymmetry was revealed in the process of lateralization of moving sound images, which, under certain conditions, may be of importance for increasing the accuracy of localization of sound sources in the environment.  相似文献   

3.
The ability to localize endpoints of sound image trajectories was studied in comparison with stationary sound image positions. Sound images moved either gradually or abruptly to the left or right from the head midline. Different types of sound image movement were simulated by manipulating the interaural time delay. Subjects were asked to estimate the position of the virtual sound source, using the graphic tablet. It was revealed that the perceived endpoints of the moving sound image trajectories, like stationary stimulus positions, depended on the interaural time delay. The perceived endpoints of the moving sound images simulated by stimuli with the final interaural time delay lower than 200 micros were displaced further from the head midline as compared to stationary stimuli of the same interaural time delays. This forward displacement of the perceived position of the moving target can be considered as "representational momentum" and can be explained by mental extrapolation of the dynamic information, which is necessary for successive sensorimotor coordination. For interaural time delays above 400 micros, final positions of gradually and abruptly moving sound sources were closer to the head midline than corresponding stationary sound image position. When comparing the results of both duration conditions, it was shown that in case of longer stimuli the endpoints of gradually moving sound images were lateralized further from the head midline for interaural time delays above 400 micros.  相似文献   

4.
In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects were instructed to wait for an auditory "cue" signaling the location where a subsequent "target" sound was likely to be presented. The target was occasionally replaced by an unexpected "novel" sound in the uncued ear, to trigger involuntary attention shifting. To maximize the attention effects, cues, targets, and novels were embedded within dichotic 800-Hz vs. 1500-Hz pure-tone "standard" trains. The sound of clustered fMRI acquisition (starting at t?=?7.82 sec) served as a controlled trial-end signal. Our approach revealed notable activation differences between the conditions. Cued voluntary attention shifting activated the superior intra--parietal sulcus (IPS), whereas novelty-triggered involuntary orienting activated the inferior IPS and certain subareas of the precuneus. Clearly more widespread activations were observed during voluntary than involuntary orienting in the premotor cortex, including the frontal eye fields. Moreover, we found -evidence for a frontoinsular-cingular attentional control network, consisting of the anterior insula, inferior frontal cortex, and medial frontal cortices, which were activated during both target discrimination and voluntary attention shifting. Finally, novels and targets activated much wider areas of superior temporal auditory cortices than shifting cues.  相似文献   

5.

Background

Most research on the roles of auditory information and its interaction with vision has focused on perceptual performance. Little is known on the effects of sound cues on visually-guided hand movements.

Methodology/Principal Findings

We recorded the sound produced by the fingers upon contact as participants grasped stimulus objects which were covered with different materials. Then, in a further session the pre-recorded contact sounds were delivered to participants via headphones before or following the initiation of reach-to-grasp movements towards the stimulus objects. Reach-to-grasp movement kinematics were measured under the following conditions: (i) congruent, in which the presented contact sound and the contact sound elicited by the to-be-grasped stimulus corresponded; (ii) incongruent, in which the presented contact sound was different to that generated by the stimulus upon contact; (iii) control, in which a synthetic sound, not associated with a real event, was presented. Facilitation effects were found for congruent trials; interference effects were found for incongruent trials. In a second experiment, the upper and the lower parts of the stimulus were covered with different materials. The presented sound was always congruent with the material covering either the upper or the lower half of the stimulus. Participants consistently placed their fingers on the half of the stimulus that corresponded to the presented contact sound.

Conclusions/Significance

Altogether these findings offer a substantial contribution to the current debate about the type of object representations elicited by auditory stimuli and on the multisensory nature of the sensorimotor transformations underlying action.  相似文献   

6.
Römer H  Lang A  Hartbauer M 《PloS one》2010,5(10):e13325

Background

Understanding the diversity of animal signals requires knowledge of factors which may influence the different stages of communication, from the production of a signal by the sender up to the detection, identification and final decision-making in the receiver. Yet, many studies on signalling systems focus exclusively on the sender, and often ignore the receiver side and the ecological conditions under which signals evolve.

Methodology/Principal Findings

We study a neotropical katydid which uses airborne sound for long distance communication, but also an alternative form of private signalling through substrate vibration. We quantified the strength of predation by bats which eavesdrop on the airborne sound signal, by analysing insect remains at roosts of a bat family. Males do not arbitrarily use one or the other channel for communication, but spend more time with private signalling under full moon conditions, when the nocturnal rainforest favours predation by visually hunting predators. Measurements of metabolic CO2-production rate indicate that the energy necessary for signalling increases 3-fold in full moon nights when private signalling is favoured. The background noise level for the airborne sound channel can amount to 70 dB SPL, whereas it is low in the vibration channel in the low frequency range of the vibration signal. The active space of the airborne sound signal varies between 22 and 35 meters, contrasting with about 4 meters with the vibration signal transmitted on the insect''s favourite roost plant. Signal perception was studied using neurophysiological methods under outdoor conditions, which is more reliable for the private mode of communication.

Conclusions/Significance

Our results demonstrate the complex effects of ecological conditions, such as predation, nocturnal ambient light levels, and masking noise levels on the performance of receivers in detecting mating signals, and that the net advantage or disadvantage of a mode of communication strongly depends on these conditions.  相似文献   

7.
In the work the influence of the artificial sound stimulation during incubation on the speed of the Pekin duck breed hatching as well as on their mortality during that period was observed. The set eggs were hatched in four hatcheries. The eggs of the first two hatcheries (control groups Ka and Kb) were not sound stimulated. In the other two groups the set eggs were, from the very first hour of hatching, stimulated by the "knocking" sound from an electronic sound generator (experimental groups "a" and "b"). For the stimulation, the acoustic signal with intensity of 25 dB and frequency 5.68 Hz was applied. The fastest hatching process was recorded in the groups with sound stimulation. The "a" experimental group was the fastest, the ducks were hatched after 640.75+/-10.15 hours, in the "b" experimental group the ducks were hatched after 656.50+/-1.70 hours of incubation. In both sound stimulated experimental groups (a, b) the increased embryonic mortality resulted in the decrease of the percentage of hatchability--to 68.09+/-1.77% and 76.44+/-2.68%, respectively. This is statistically evident (P<0.01) when compared with the respective control groups which reached the 88.81+/-1.86% and 89.35+/-0.81% hatchability.  相似文献   

8.

Background

When sound arrives at the eardrum it has already been filtered by the body, head, and outer ear. This process is mathematically described by the head-related transfer functions (HRTFs), which are characteristic for the spatial position of a sound source and for the individual ear. HRTFs in the barn owl (Tyto alba) are also shaped by the facial ruff, a specialization that alters interaural time differences (ITD), interaural intensity differences (ILD), and the frequency spectrum of the incoming sound to improve sound localization. Here we created novel stimuli to simulate the removal of the barn owl''s ruff in a virtual acoustic environment, thus creating a situation similar to passive listening in other animals, and used these stimuli in behavioral tests.

Methodology/Principal Findings

HRTFs were recorded from an owl before and after removal of the ruff feathers. Normal and ruff-removed conditions were created by filtering broadband noise with the HRTFs. Under normal virtual conditions, no differences in azimuthal head-turning behavior between individualized and non-individualized HRTFs were observed. The owls were able to respond differently to stimuli from the back than to stimuli from the front having the same ITD. By contrast, such a discrimination was not possible after the virtual removal of the ruff. Elevational head-turn angles were (slightly) smaller with non-individualized than with individualized HRTFs. The removal of the ruff resulted in a large decrease in elevational head-turning amplitudes.

Conclusions/Significance

The facial ruff a) improves azimuthal sound localization by increasing the ITD range and b) improves elevational sound localization in the frontal field by introducing a shift of iso–ILD lines out of the midsagittal plane, which causes ILDs to increase with increasing stimulus elevation. The changes at the behavioral level could be related to the changes in the binaural physical parameters that occurred after the virtual removal of the ruff. These data provide new insights into the function of external hearing structures and open up the possibility to apply the results on autonomous agents, creation of virtual auditory environments for humans, or in hearing aids.  相似文献   

9.
Feeding peculiarities of mass pelagic everyphagous fish Atlantic Chub mackerel Scomber colias, Atlantic horse mackerel Trachurus trachurus, Cunene horse mackerel Trachurus trecae from the Canary upwelling and the frontal zones of Mauritania were investigated. Atlantic Chub mackerel feeds mainly on fish inhabiting the zone of epipelagial, crustaceans and other organisms distributing in the sound scattering layers and also detritus and detritus–algal mixture. Cunene horse mackerel and Atlantic horse mackerel feed on mesopelagic fish and the organisms from the sound scattering layers. Feeding competition between these species does not occur due to non-concurrence of the places for concentration and nourishment. Correlation of food components, their occurrence and nourishment change for all species in conformity with fish sizes, physiological conditions and the season.  相似文献   

10.
Many animal groups use sounds in reproduction in order to court mates or repel rivals. We describe the sounds and behavioural context of courtship sound production in male sand gobies, Pomatoschistus minutus, and examine the variability of acoustic parameters and the fine temporal patterning of sound units. Male sand gobies excavate a nest under a suitable solid substrate and attract females to mate, attaching the eggs to the ceiling of the nest. Before mating a female may repeatedly enter and leave a male's nest. Sounds were not detected during the courtship phase outside the nest, but were recorded when females were in the nest before spawning. Sounds were produced in 44–100% of such nest visits, varying with individual males. The sand goby sound consists of a train of pulses repeated at a rate of 23–29 pulses per second. The frequency spectrum of single pulses was continuous from 20–30Hz to 500Hz and reached a peak around 100Hz. The absolute sound pressure level ranged from 118 to 138dB re 1µPa at 1–3cm. The sand goby emits sound in distinct sound groups (bursts). Sound temporal features (duration, pulse repetition rate) vary systematically over the course of the burst. Within- and between-male variation of acoustic parameters was examined from sounds emitted by the male. Sound amplitude (peak-to-peak, mV) and pulse rate varied significantly among males, despite low individual stereotypy. Furthermore, sound pressure level correlated with body size. The potential informative content of acoustic parameters is discussed in the light of a possible role of the sand goby sound in mate choice.  相似文献   

11.
EP series from the cat's inferior colliculus were recorded following binaural stimulation with click series imitating sound source movement due to variation of the interaural time delay (and thus evoking in man the sensation of the moving fused auditory image, FI). The "movement effect" was evaluated as the change in the EP amplitude during the series. The movement effect itself as well as its predominance under conditions of the ipsilateral FI movement as compared to those of the contralateral movement, proved to be connected with greater effectiveness of the contralateral stimulation relative the ipsilateral one.  相似文献   

12.
Synopsis During reproduction maleCottus bairdi defend cavities beneath stones and perform defense and reproductive displays. Using a geophone to detect substrate vibrations under dark conditions (infrared viewing), we recorded three types of sounds. Knocks are produced during head nods and an acoustically similar sound is produced when the fish slaps the head to the substrate. A third sound, the drum roll appears to be a fast repetition of several knocks followed by a head slap. We argue that these signals traveling through the substrate are of greater importance than sounds traveling through the water because (1) the substrate vibration attenuates at a much lesser rate than the water vibration and, (2) even near riffles, which generate much water vibration, the background noise in the substrate is low enough for the fish to detect such sounds.  相似文献   

13.
Li H  Wang Q  Steyger PS 《PloS one》2011,6(4):e19130

Background

Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity.

Methods

Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy.

Results

Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides.

Conclusions

Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.  相似文献   

14.
Sound production in Cyprinodon bifasciatus, a pupfish endemic to the Cuatro Ciénegas basin, Coahuila, México, is documented. The average dominant frequency is 409Hz, with an average duration of 55msec. Calls were produced by males during pursuits of conspecifics and cichlids, during territory patrol, while following a female and after spawning. There are differences in call structure between contexts, especially postspawn calls versus pursuit and courtship calls. There may be differences between sites, especially Mojarral Oeste versus Becerra and Churince. Given sound production in this species of Cyprinodon and the related genus Fundulus, it is possible that sound production is more widespread than previously thought in Atherinimorpha. In addition, this is another documentation of sound production in a clear freshwater species indicating that sound production is widespread in clear freshwater fish.  相似文献   

15.
Senescence-acceleration-prone mice (SAMP8) provide a model to study the influence of early postnatal sound exposure upon the aging auditory midbrain. SAMP8 were exposed to a 9-kHz monotone of either 53- or 65-dB sound pressure level during the first 30 postnatal days, the neurons in the auditory midbrain responding selectively to 9 kHz were localized by c-fos immunohistochemistry and the following parameters were compared to control SAMP8 not exposed to sound: mortality after sound exposure, dendritic spine density, and quantitative neurochemical alterations in this 9-kHz isofrequency lamina. For morphometric analysis, animals were examined at 1, 4, and 8 months of age. Serial sections of the inferior colliculus were Golgi impregnated or stained immunohistochemically for the expression of 1 subunit of NMDA receptor or GABA. Mortality after exposure to 53 dB was the same as in controls, but was markedly increased from 7 months of age onward after postnatal exposure to 65 dB. No gross morphological alterations were observed in the auditory midbrain after sound exposure. However, sound exposure to 53 or 65 dB significantly reduced dendritic spine density by 11% at 4 months or by 11–17% both at 1 and 4 months of age, respectively. The effect of sound exposure upon neurons expressing the NMDA1 subunit was dose-dependent. Increasing with age until 4 months in control mice and remaining essentially stable thereafter, the percentage of NMDA1-immunoreactive neurons was significantly elevated by 40–66% in 1- and 8-month-old SAMP8 exposed to 53 dB, whereas no significant effect of 65 dB was apparent. The proportion of GABAergic cells declined with age in controls. It was significantly decreased at 1 month after 53 and 65 dB sound exposure. In contrast, it was elevated at later stages, being significantly increased at 4 months after exposure to 53 dB and at 8 months after exposure to 65 dB. The total cell number in the 9-kHz isofrequency lamina of SAMP8 decreased with age, but was not affected by exposure to either 53 or 65 dB. The present results indicate that early postnatal exposure to a monotone of mild intensity has long-term effects upon the aging auditory brain stem. Some of the changes induced by sound exposure, e.g., decline in spine density, are interpreted as accelerations of the normal aging process, whereas other effects, e.g., increased NMDA1 expression after 53 dB and elevated GABA expression after both 53 and 65 dB, are not merely explicable by accelerated aging.  相似文献   

16.

1. 1. It is often reported that any sound from the neighborhood disturbs one's reading or study, even though it is at a low level.

2. 2. This study was done to clarify the mechanism by which the low level sound in our daily life exerts an influence upon mental tasks.

3. 3. Two experiments were carried out, one by an ordinary, and the other by a social psychological test. In both, a random number generation test was applied as the mental exercise. The levels of presented sounds in each condition were 34–45 dBA in Leq.

4. 4. One of various conditions was in conformity with a setting of“low level noise”, where existence of low level sound is not recognized as an inevitable phenomenon but perceived as the noise.

5. 5. The quality of performance tends to be worse, though the quantitative side can be maintained.

Author Keywords: low-level sound; mental task; random number generation test; social psychological test; neighborhood noise  相似文献   


17.
Summary The inner ear of the leopard frog,Rana pipiens, receives sound via two separate pathways: the tympanic-columellar pathway and an extratympanic route. The relative efficiency of the two pathways was investigated. Laser interferometry measurements of tympanic vibration induced by free-field acoustic stimulation reveal a broadly tuned response with maximal vibration at 800 and 1500 Hz. Vibrational amplitude falls off rapidly above and below these frequencies so that above 2 kHz and below 300 Hz tympanic vibration is severely reduced. Electrophysiological measurements of the thresholds of single eighth cranial nerve fibers from both the amphibian and basilar papillae in response to pure tones were made in such a way that the relative efficiency of tympanic and extratympanic transmission could be assessed for each fiber. Thresholds for the two routes are very similar up to 1.0 kHz, above which tympanic transmission eventually becomes more efficient by 15–20 dB. By varying the relative phase of the two modes of stimulation, a reduction of the eighth nerve response can be achieved. When considered together, the measurements of tympanic vibration and the measurements of tympanic and extratympanic transmission thresholds suggest that under normal conditions in this species (1) below 300 Hz extratympanic sound transmission is the main source of inner ear stimulation; (2) for most of the basilar papilla frequency range (i.e., above 1.2 kHz) tympanic transmission is more important; and (3) both routes contribute to the stimulation of amphibian papilla fibers tuned between those points. Thus acoustic excitation of the an uran's inner ear depends on a complex interac tion between tympanic and extratympanic sound transmission.Abbreviations dB SPL decibels sound pressure level re: 20 N/ m2 - AP amphibian papilla - BP basilar papilla - BEF best excitatory frequency  相似文献   

18.
Synopsis Males of two freshwater Italian gobies, the common goby, Padogobius martensii and the panzarolo goby, Knipowitschia punctatissima, emit trains of low-frequency pulses, i.e. drumming sounds, in the presence of a ripe female in the nest. In P, martensii the drumming sound is usually followed by a tonal sound (complex sound). Examination of the pulse structure suggests that these sounds are produced by muscles acting on the swimbladder. Both species exhibited high emission rates of spawning sounds, especially before the beginning of oviposition. Moreover, spawning sound production ceased only after the female abandoned the nest, which always occurred at the end of oviposition. This is the first study reporting the production among fishes of distinct sounds during protracted spawning. Unlike sounds produced just before mating by fishes with planktonic or demersal zygotes, the spawning sound production of these gobies does not function to coordinate mating events in the nest. The presence of a two-part vocalization by male P. martensii even suggests a functional dichotomy of spawning sounds in this species.  相似文献   

19.
Summary MaleThecophora fovea (Tr.) (Noctuidae) sing continuously for several minutes by rubbing the 1. tarsal segment of the metathoracic leg against a stridulatory swelling on the hindwing. In Northern Yugoslavia (Slovenia) the males emerge in late October and start stridulating about a week later when the females emerge.The sounds are pulse trains consisting of 10–12 ms long sound pulses with main energy around 32 kHz and a PRR of 20 pulses/s. The mechanics of the sound producing apparatus was studied by activating the stridulatory swelling with short sound impulses. The impulse response of the swelling was recorded by laser vibrometry and amplitude spectra of the vibrations showed maximum velocities between 25 and 35 kHz. Hence, it seems likely that the stridulatory swelling is driven as a mechanical oscillator with a resonance frequency which determines the carrier frequency of the sounds.Audiograms of both males and females showed peak sensitivities at 25–30 kHz. The median threshold at the BF was 36 dB SPL. The peak intensity of the sound pulses was 83 dB SPL at 1 m, which should enable the moths to hear each other at distances of around 30 m. Therefore sound production inT. fovea might function in long distance calling. It is argued thatT. fovea can survive making such a noise in spite of being palatable to bats because it flies so late in the year that it is temporally isolated from bats.Abbreviations PRR pulse repetition rate - SPL sound pressure level - BF best frequency  相似文献   

20.
We were interested in how the transmission of sound through the lung was affected by varying air content in intact humans as a method of monitoring tissue properties noninvasively. To study this, we developed a method of measuring transthoracic sound transit time accurately. We introduced a "coded" sound at the mouth and measured the transit time at multiple microphones placed over the chest wall by using a 16-channel lung sound analyzer (Stethographics). We used a microphone placed over the neck near the trachea as our reference and utilized cross-correlation analysis to calculate the transit times. The use of the coded sound, composed of a mix of frequencies from 130 to 150 Hz, greatly reduced the ambiguity of the cross-correlation function. The measured transit time varied from 1 ms at the central locations to 5 ms at the lung bases. Our results also indicated that transit time at all locations decreased with increasing lung volume. We found that these results can be described in terms of a model in which sound transmission through the lung is treated as a combination of free-space propagation through the trachea and a propagation through a two-phase system in the parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号