共查询到20条相似文献,搜索用时 0 毫秒
1.
Arkady S. Pivovarov Galina B. Murzina Denis A. Makhnovsky Mariya S. Tret’yakova Natalya A. Vasil’yeva 《Invertebrate neuroscience : IN》2013,13(2):135-150
We investigated the role of the mobility of acetylcholine receptors in the depression of an acetylcholine-induced inward current (ACh-current) of Helix lucorum (a land snail) command neurons of defensive behavior in a cellular analog of habituation. The inhibitors of endocytosis and exocytosis, actin microfilaments and cytoskeleton microtubules, serine/threonine protein kinases (PKA, PKG, calcium calmodulin-dependent PK II, p38 mitogen-activated PK), tyrosine kinases (including Src-family kinases), serine/threonine phosphatases (PP1, PP2A, PP2B, PPM1D), and tyrosine protein phosphatases altered the depression of the ACh-current. A comparison of experimentally calculated curves of the ACh-current of these neurons and those obtained by mathematical modeling revealed the following: (a) ACh-current depression is caused by the reduction in the number of membranous ACh-receptors, which results from the shift in the balance of multidirectional transport processes of receptors toward the predominance of ACh-receptor internalization over their recycling; (b) depression of ACh-current depends on the activity of serine/threonine and tyrosine protein kinases and protein phosphatases, whose one of the main targets is the neuron transport system—actin microfilaments and microtubules of cytoskeleton, as well as motor proteins. 相似文献
2.
Makhnovskiĭ DA Murzina GB Tret'iakova MS Pivovarov AS 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2011,61(4):459-475
Inhibitor ofadenylate cyclase (SQ 22,536) and inhibitors ofserin/threonine protein kinases A (PKA -Rp-cAMPS), G (PKG - H-Arg-Lys-Arg-Ala-Arg-Lys-Glu-OH), calcium/calmodulin-dependent kinase II (CaMKII - KN-93), p38mitogen-activated (MAPK - PD 169316), and tyrosine protein kinases (genistein), including their Src-family (PP2), weaken the depression of the acetylcholine-induced inward current (ACh-current) in command Helix neurons of defensive behavior under conditions of rhythmical local acetylcholine applications to the soma in the cellular analogue of habituation. Selective inhibitor of protein kinase C (PKC - chelerythrine) does not change the depression of the ACh-current. Mathematical simulation of the influence of the inhibitors applied on a number of membrane-connected acetylcholine receptors made it possible to obtain the design curves consistent with the experimental curves of the ACh-current depression. The experimental data and the results of calculations allowed us to make the following assumptions. The reversible depression of sensitivity to ACh of command Helix neurons of defensive behavior in the cellular correlate of habituation depends on the decrease in the number of membrane-connected ACh receptors as a result of activation of several serine/threonine protein kinases: A, G, CaMKII, p38 MAPK (without the participation of PKC), and tyrosine protein kinases including the family of Src-kinases. The main targets of all protein kinases under study (excluding PKC) in command neurons are the proteins of cytoskeleton (actin microfilaments and microtubules). Phosphorylation of these proteins evokes polymerization and stabilization ofactin microfilaments, stabilization of the main microtubule protein tubulin, a change in the activity of motor proteins responsible for the speed of receptor endocytosis and exocytosis. The PKG action is indirect via the modification of actin-myosin interaction. Protein kinase A, CaMKII, and tyrosine Src-kinase phosphorylate also proteins activating receptor translocation into clathrin-coated membrane invaginations during endocytosis. 相似文献
3.
Pivovarov AS Nistratova VL Boguslavskiĭ DV 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2001,51(6):723-732
The role the Na/Ca-exchange and intracellular Ca2+ released from Ca(2+)-depots in the modulatory action of Na,K-pump inhibitor ouabain on cholinosensitivity in the command neurons of Helix lucorum was studied in a cellular analogue of habituation. The integral transmembrane inward currents in LPa2, LPa3, RPa3, and RPa2 neurons were recorded in Helix lucorum ganglia preparation using two-electrode voltage clamp technique. The reduction of cholinosensitivity of a neuron was estimated as a depth of the depression of the acetylcholine-induced inward currents during the rhythmic local acetylcholine applications (with the interstimulus interval of 2-4 min) on a somatic membrane. The inhibitor of the Na/Ca-exchange benzamil (the extracellular action, 15-35 mcM) and two specific inhibitors of Ca-ATPase in the sarcoplasmic and endoplasmic reticulum, cyclopiazonic acid and thapsigargin (intracellular injection by spontaneous diffusion, 0.1 mM) prevented the modification of the depression of acetylcholine-induced current by ouabain (100 mcM) during the rhythmic application of acetylcholine. A conclusion is drawn that the inhibitor of the Na,K-pump ouabain modifies the depression of neuron cholinosensitivity in the cellular analogue of habituation via the Na/Ca-exchange and intracellular Ca2+ released from Ca2+ depots. 相似文献
4.
A S Pivovarov E I Drozdova Iu Iu Belosludtsev P M Demin G I Miagkova 《Biulleten' eksperimental'no? biologii i meditsiny》1991,112(7):3-5
The impact of a non-cyclized arachidonic acid derivative 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15-HETE) upon the dynamics of the inward current extinction, caused by repeated ion-tophoretic acetylcholine applications on the soma, was studied through a double electrode voltage clamp technique on the Helix lucorum identified neurons RPa3 and LPa3. The extracellular effect of 15-HETE (4-16 microM) was found to have a two phase influence on the inward current extinction, depending on the time of exposure to the compound. The short-latent effect (up to 60-80 min) displays itself as an extinction decrease, whereas the long-latent effect (after 60-80 min) - as an enhanced extinction. The effects caused by 15-HETE are irreversible. The short-latent one was probably due to the earlier described inhibition of 5- and 12-lipoxygenase enzymes by 15-HETE while the long-latent one - due to its intrinsic function. 相似文献
5.
6.
V. A. Dyatlov 《Neurophysiology》1988,20(1):46-51
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix
pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988. 相似文献
7.
Pivovarov AS Boguslavskiĭ DV 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2000,50(5):855-866
In Helix lucorum snail we studied the effects of ouabain, inhibitor of Na,K-pump, on the depression of cholinosensitivity in command neurons of withdrawal behavior and the role of the intracellular free Ca2+. The cellular analog of the negative learning (habituation) was used Transmembrane integral inward currents were recorded from the identified LPa2, LPa3, RPa3, and RPa2 neurons in ganglia preparation using two-electrode voltage clamp technique. Acetylcholine (ACh) was locally applied iontophoretically. Reduction of neuronal cholinosensitivity was estimated as a depth of depression of the ACh-induced inward current during rhythmic local application of ACh (interstimulus interval of 1-3 min) onto the somatic membrane. Bath application of ouabain (0.1 mM) produced an increase in depression in one group of neurons and its decrease in another group. After 60-150 min of spontaneous diffusion of a calcium ion chelator BAPTA (1 mM) from the intracellular microelectrode, ouabain produced only the increase in depression. If CaCl2 (100 mM) was added to the solution of the voltage-recording intracellular microelectrode, 60 min later ouabain produced only the reduction of the depression of the ACh current. The conclusion is drawn that the inhibition of the Na,K-pump by ouabain modifies the depression of neuronal cholinosensitivity in the cellular analog of habituation. The direction of the modulatory effect depends on the basal concentration of the intracellular free Ca2+. 相似文献
8.
The present communication concerns with the analysis of elementary and the compound excitatory postsynaptic potentials (eEPSPs and cEPSPs) recorded by intracellular microelectrode from an identified defensive command neuron of the snail Helix lucorum. The eEPSPs were evoked by single presynaptic action potentials (APs) elicited by cationic current injection into one of the identified sensory neurons synapsing on the respective command neuron. The cEPSPs were elicited by local brief tactile stimuli on the skin or internal organs. It was shown that the cEPSPs amplitudes depend mainly on the number of activated sensory neurons. Compound EPSPs depend also on frequency and the number of APs in the bursts occurring in a single neuron. Presynaptic APs having frequency 2-10 Hz evoke high frequency depression of that eEPSPs after an interval is followed by post-tetanic potentiation of single eEPSPs. Preceding stimulation of a pneumostom area facilitates the cEPSPs elicited by repeated stimulation of viscera. The eEPSPs from the same visceral area demonstrate no heterosynaptic facilitation in experiments with double parallel intracellular recording from responsive sensory and command neurons. The different types of the eEPSPs plasticity are discussed according to their contribution cEPSPs plastic changes. 相似文献
9.
Yoshimi Ikemoto Satoru Ishizuka Kyoichi Ono Norio Akaike 《Cellular and molecular neurobiology》1988,8(3):293-305
1. Kinetics of activation and desensitization phases of the acetylcholine (ACh)-induced chloride current (ICI) were studied using isolated single neurons of Japanese land snail and the "concentration clamp" technique. 2. The dose-response curve for the peak ICI gave a dissociation constant of 7.1 x 10(-6) M and a Hill coefficient of 1.8. 3. The current-voltage relationship was linear in the voltage range examined (-60 to +10 mV) and the reversal potential (EACh) was -7.2 +/- 1.5 mV (N = 10). The value was close to the calculated equilibrium potential for chloride ions (ECI). 4. Both activation and desensitization phases of the ACh-induced ICI consisted of a single exponential at concentrations less than 3 x 10(-6) M and a double exponential at higher concentrations. The time constants of both phases decreased with increasing ACh concentrations but showed no potential dependency. 5. The recovery from desensitization of the ICI induced by 5 x 10(-6) M ACh proceeded double exponentially, with time constants of 11 and 114 sec at a holding potential of -30 mV. 6. Noise analysis was performed on a steady-state current induced by 3 x 10(-7) to 2 x 10(-6) M ACh. The mean open time was about 60 msec at 10(-6) M ACh and the single-channel conductance was 14 PS. 7. These results suggest that the ACh receptor-Cl channel complex in snail neurons has two binding sites with the dissociation constant of 7.1 x 10(-6) M and is rapidly activated and desensitized to a steady level in the presence of the agonist. 相似文献
10.
-Tocopherol (vitamin E) and some of its derivatives have been found to exert modulatory actions, opposite to each other, on acetylcholine-induced current in identified molluscan neurons. A comparison of the infrared absorption spectra of arachidonic acid obtained in the presence of vitamin E, its analog, and some of its derivatives with the results of electrophysiological experiments allows us to suggest that vitamin E and its derivatives are catalysts either slowing down or accelerating the arachidonic acid metabolism, correspondingly.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 216–218, May–June, 1993. 相似文献
11.
Hill numbers before and after tetanic stimulation were calculated from dose-response dependence between the amplitude of the acetylcholine-induced inward current and the amplitude of the iontophoretic current through a micropipette filled with acetylcholine. Semi-intact Helix lucorum preparation was used. Acetylcholine-induced inward currents were recorded using two-electrode voltage clamp technique. Tetanic stimulation evoked changes in dose-response dependence but did not modify the slopes of dose-response plots (Hill numbers were 1.42 + 0.15 before and 1.41 + 0.15 after tetanization). It was concluded that increase in cholinosensitivity in LPa3 and RPa3 neurons after the orthodromic tetanic stimulation of nervus intestinalis is not accompanied by changes in the number of ligand-binding sites per acetylcholine receptor molecule or proportion of nicotinic and muscarinic cholinoreceptors. 相似文献
12.
Nistratova VL Pivovarov AS 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2004,54(4):554-564
Influence of ouabain, the inhibitor of Na,K-pump, on habituation of Helix to tactile stimulation was identical to the ouabain-induced modification of cholinosensitivity reduction in command neurones of defensive behaviour of Helix lucorum in cellular model of habituation. Effects of intracellularly injected ligands of two types of Ca2+ -depot receptors, inositoltrisphosphate (IP3) and ryanodine receptors, on ouabain-induced changes were studied in cellular model of habituation. The antagonist of IP3 receptors heparin (0.1 mM), their agonist IP3 (0.1 mM) and inhibitor of ryanodine-dependent Ca2+ mobilization dantrolen (0.1 mM) prevented the depression of acetylcholine-induced current from the ouabain-evoked modification. The agonist/antagonist of ryanodine receptors ryanodine at two tested concentrations (0.1 mM and 1 mM) did not change the ouabain effect. It is concluded that Ca2+ released from intracellular Ca2+ -depots via IP3 receptors is involved into neuronal mechanism of Na,K-pump regulation of habituation in Helix lucorum to tactile stimulation. 相似文献
13.
14.
Orlova ME Zakharov IS Balaban PM 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2000,50(1):113-123
It was shown earlier that some neurons in Helix CNS express the mRNA of the precursor of neuropeptide GFAD. Using the data obtained with the help of the whole-mount in situ hybridization, we tried to identify a group of such neurons, namely, the pedal caudo-ventral group and to determine their possible functions. The local extracellular stimulation of the pedal caudo-ventral group resulted in movements of reproductive organs in the semi-intact preparation and suppressed the activity of the modulatory neurons controlling feeding and defensive behavior. Application of synthetic peptide GFAD (10(-8) mol/l) also activated movements of the reproductive organs and suppressed the activity of the modulatory neuron controlling feeding behavior. Stimulation of the labial nerves resulted in suppression of caudo-ventral neurons with simultaneous activation of the modulatory neuron controlling feeding behavior. The obtained evidence suggests that the caudo-ventral neurons can regulate movements of the reproductive organs and also coordinate different functions in realization of the integral sexual behavior. This group of neurons inhibits the modulatory neurons controlling the forms of behavior incompatible with courtship, i.e., feeding and defensive forms. 相似文献
15.
V N Ierusalimski? I S Zakharov T A Palikhova P M Balaban 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1992,42(6):1075-1089
Summarized literature and experimental author's data are presented concerning the structure of the nervous system and identification of individual neurons in the snail Helix lucorum. Information about especially well-known neurons is given in a table, maps of the ganglia are presented altogether with the results of retrograde staining of different cerebral and suboesophageal nerves. Are given the references concerning morphology of the central nervous system of the snail and identifiable neurons. 相似文献
16.
Abramova MS Moskvitin AA Pivovarov AS 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2006,56(3):355-362
We studied influence of protein synthesis inhibitors on short-term sensitization of Helix escape reaction and potentiation cholinosensitivity in command neurons. Inhibitor of protein synthesis anisomycin does not prevent behavioral sensitization. Anisomycin and irreversible inhibitor of protein synthesis saporin change the dynamics of cholinosensitivity potentiation in command neurons. The results Suggest that investigated sensitization of Helix escape reaction does not require synthesis of new proteins. 相似文献
17.
O W Witte E J Speckmann J Walden 《Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol.》1985,80(1):15-23
The influence of potential-dependent membrane conductances on amplitude and time course of acetylcholine (ACh) responses was studied. The investigations were performed on the identified neurons B1 and B3 of the buccal ganglion of Helix pomatia. The neurons B1 and B3 were depolarized by ACh. The depolarization was accompanied by a decrease of membrane resistance. An inward rectification occurring negative to the resting membrane potential (RMP) reduced the amplitude of the ACh depolarizations. An outward rectification occurring positive to the RMP consisted of two parts and ceiled the ACh responses. The early outward current reduced the amplitude and modified the time course of ACh responses. Local responses or axonal action potentials increased the amplitude of the ACh depolarizations. 相似文献
18.
D B Logunov 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1983,33(2):355-362
In experiments on a semi-intact snail preparation and a preparation of the snail isolated CNS, after spikes (Sp) evoked in presynaptic neurones by depolarizing current, not only rapid (R) EPSPs emerged in the command neurones of the defensive reaction of closing the pneumostome, but they were also followed by slow (S) EPSPs lasting over 2 min. For each single synaptic contact, the R and S EPSP amplitudes were in a good linear correspondence. In different synapses no direct connection was observed between R EPSP and S EPSP. It is suggested that R and S EPSPs may set in as a result of the action of different substances on the command neurones. Functional significance of S EPSPs with different amplitudes in different command neurones may consist in a prolonged specific preparation of the neurones for the action of stimuli. 相似文献
19.
I V Kudriashova D B Logunov 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1986,36(6):1116-1124
Application of desglycine-arginine-vasopressin to spontaneously nonactive command neurones of the snail's defensive reflex in the process of low-frequency (2-4 min intervals) intracellular stimulation led under certain conditions to an increase of excitability that was expressed in the shortening of latency of action potential generation, increase of the number of action potentials in response to a stimulus of fixed value, increase of membrane resistance, lowering of critical level of membrane depolarization and amplifying of pacemaker activity. However in spite of unidirectional changes of all the recorded parameters, the increases of values, opposite to the latency, did not correlate with the increases of membrane resistance and correlated well with the changes of depolarization critical level. If desglycine arginine-vasopressin was added to the medium during worsening of the neurones' excitability was probably caused by the influence of desglycine-arginine-vasopressin on the membrane active properties. 相似文献
20.
Posttetanic potentiation (by orthodromic stimulation) of cholinosensitivity in LPa3 and RPa3 Helix lucorum neurons that are command in respect to withdrawal behavior was shown earlier (Pivovarov et al., 1999). Now we studied the regulatory role of the Na,K-pump and intracellular free Ga2+ in the posttetanic potentiation (PTP) of cholinosensitivity in command neurons. Semiintact Helix preparation "CNS-visceral bag" was used in experiments. Acetylcholine-induced inward currents were recorded using two-electrode voltage clamp technique. Acetylcholine was applied to somata of the identified LPa3 and RPa3 neurons with a 10-min interval before and after electrical tetanic stimulation of the n. intestinalis (10.5 mA; 0.1 s; 2/s; 2 min). Ouabain (extracellular application, 70 mcM) blocked the PTP. Intracellular injection of BAPTA (1 mM), chelator of Ca2+ ions, prevented the PTP. The PTP was absent after the ouabain application against the background of preliminary intracellular injection of BAPTA. A conclusion war drawn about Ca-dependent participation of Na,K-pump in posttetanic potentiation of cholinosensitivity in command Helix lucorum neurons of withdrawal behavior. 相似文献