首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The granulosis virus of Pieris rapae, the imported cabbageworm (P. rapae GV), persisted in soil after application. Virus produced by epizootics of the disease in populations of the host accumulated in soil in nontreated plots with concentrations of the virus in soil and on foliage, being similar at harvest to concentrations in virus-treated plots. Also P. rapae GV produced in epizootics of the disease increased concentrations in soil of virus-treated plots and maintained substantial residues of the virus on the foliage. Little virus accumulated in plots treated with some chemical insecticides and Bacillus thuringiensis because few host larvae survived to support late-season epizootics. Small quantities of P. rapae GV were found in heads of cabbage harvested from plots in October, but these residues were not related to plot treatment.A study in which nontreated and virus-treated plots were replanted for 2 years after treatment indicated an increase in concentrations of P. rapae GV in surface soil in years following treatment. Concentrations of P. rapae GV in soil in virus-treated and nontreated plots were similar in the autumn of the year of treatment and in subsequent years of the study. Concentrations were nearly unchanged during the winter, were reduced by cultivation preparatory to planting in the spring, and increased with epizootics of the disease in host populations in summer and autumn.P. rapae GV disease was prevalent during September and October in populations of P. rapae larvae in plots in which substantial concentrations of the virus were found and contributed to late-season control of the pest insect.  相似文献   

2.
A purified granulosis virus isolated fromPieris brassicae (L.) was tested in the field against an introduced population ofPieris rapae (L.) larvae on cabbage (cv January King) in small experimental plots at Littlehampton, Sussex. Experiments were designed to compare the relative efficacy of single and multiple applications of virus (2.1×1012 and 3.7×1012 or 2.1×1014 and 3.7×1014 virus capsules/ha) in reducing numbers ofP. rapae larvae. An experiment was carried out in June 1978 and repeated in August to coincide approximately with the 2 natural generations ofP. rapae in southern England. Larval populations were monitored by regularin situ assessment of plants and by destructive sampling. Within 10 days of spraying virus there was a significant reduction in the mean larval population on all virus-treated plots compared with untreated controls. Sprays of 2.1×1014 and 3.7×1014 capsules/ha reduced larval numbers more quickly than 2.1×1012 and 3.7×1012/ha treatments. In the 1st experiment, three sprays of virus at either 2.1×1012 or 2.1×1014 capsules/ha gave no increase over the final level of control achieved by a single spray. However, in the 2nd experiment, a single spray of 3.7×1012 capsules/ha did not significantly reduce the numbers of larvae. It is likely that this failure could be accounted for by a combination of the larger “natural” population ofP. rapae recorded midway through the 2nd experiment and the rapid inactivation of virus deposits which left little infectious virus to infect these larvae. Virus inactivation was so rapid that only 7–33 % of the initial virus deposits remained 1 day after application. These results suggest that further understanding of virus formulation, persistence and dosage rates are needed before such a virus can be used in a rational manner.  相似文献   

3.
Pieris rapae granulovirus (PrGV) is an important pathogen that has been exploited as a microbial insecticide to control agriculture pests. They can specifically infect cabbage butterfly (Pieris rapae), causing a series of pathological symptoms. In this infected P. rapae at 6?h and 72?h. As a result, a series of host genes were significantly modulated following PrGV infection, including those correlated with exoskeleton, ribosome, heat shock protein (HSP), proteasome, oxidation-reduction and apoptosis. Taken together, our study unveiled the P. rapae response to PrGV at different time point and provided a potential strategy for pest management.  相似文献   

4.
We assessed the potential of annual buckwheat, Fagopyrum esculentum Moench, to lead to improved parasitism of lepidopteran cabbage pests over four years. Pest, parasitism, and hyperparasitism rates were monitored in replicated cabbage plots (12 × 20 m) with or without 3 m wide buckwheat borders from 2000 to 2003. Floral borders did not significantly increase egg, larval, or pupal densities of cabbage looper, Trichoplusia ni (Hübner), imported cabbageworm, Pieris rapae (L.), or diamondback moth, Plutella xylostella (L.). Buckwheat increased parasitism rates by Voria ruralis (Fallen) on T. ni larvae and Cotesia rubecula (Marshall) on P. rapaelarvae over four years. Parasitism by Diadegma insulare (Cresson) on P. xylostella larvae was higher in buckwheat than control plots in the first year, and parasitism by Euplectrus plathypenae (Howard) on T. ni larvae was lower in buckwheat than control plots in the second year. The hyperparasitoid Conura side (Walker) attacked D. insulare all four years, but buckwheat did not affect hyperparasitism rates. The effect of spatial scale on pest densities and parasitism in 2001 was evaluated by comparing plots separated at least 67 m (nearby) versus 800 m apart (isolated). T. ni pupae and P. rapae eggs and pupae were more abundant in plots in closer proximity, whereas P. xylostella densities did not vary by the spatial separation of plots. Tachinids and Pteromalus puparum (L.) attacked more P. rapae in nearby plots. E. plathypenae responded to the treatment × scale interaction, parasitizing more in control than buckwheat when plots were isolated but not when plots were nearby.  相似文献   

5.
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana.  相似文献   

6.
The interaction betweenTrybliographa rapae andAleochara bilineata, 2 parasitoids of the cabbage root fly, is discussed. Larvae ofA. bilineata could not differentiate between cabbage root fly pupae containingT. rapae in its endoparasitic state and unparasitized pupae but could recognize pupae containingT. rapae once the latter had reached its ectoparasitic state. Attack byA. bilineata whileT. rapae was still in its endoparasitic state usually resulted in the staphylinid killing the eucoilid. IfT. rapae had reached the ectoparasitic state before the host pupa was attacked byA. bilineata larvae the eucoilid survived attack by the beetle larva. Multiparasitism, however, resulted in increased levels of mortality of both parasitoid populations.   相似文献   

7.
S-ethyldipropylthiocarbamate (EPTC) applied as a soil treatment or over-the-top spray on cabbage plants (Brassica oleracea L.) caused the leaves to turn ‘glossy’ for as long as 30 days. EPTC-induced glossy plants were damaged significantly less than untreated plants by diamondback moth,Plutella xylostella (L.), imported cabbage worm,Pieris rapae (L.), and cabbage looper,Trichoplusia ni (Hbn.). Reductions in damage were equivalent to those obtained from treatment with permethrin. When used in combination with permethrin, EPTC provided additive control of damage by these pests. Our calculations show EPTC-induced resistance to be cost-effective. This use of EPTC has several limitations, however. Younger plants (<9 leaves) were killed or injured by the herbicide. The growth of older plants was not affected, but plants did not become glossy for ca. 10 days after they were treated with EPTC. The crop must be protected with insecticides until the plants are mature enough to treat with EPTC, and until treated plants become glossy. In addition, since the glossy trait is only effective against first instar larvae, populations of later instars on glossy plants must be reduced with an application of insecticide. Finally, EPTC formulations are water-soluble and can be washed away from the plants by heavy rains and irrigation, which may make this use of EPTC impractical in some situations. Where its use is practical, and the indicated precautions are taken, EPTC-induced resistance could reduce dependence on chemical insecticides and reduce selection for insecticide resistance in diamondback moth.  相似文献   

8.
Sensitivity of the cabbage butterfly,Pieris rapae L. to feeding deterrents was compared for larvae reared on different food sources under laboratory conditions. Since cabbage-reared larvae normally reject nasturtium,Tropaeolum majus L., the effects of previous exposure to allelochemicals on larval acceptance or rejection of this plant were also examined. When compared with cabbage-reared larvae, nasturtium-reared larvae were less sensitive to feeding deterrents including cymarin, erysimoside and 2-O-β-d-glucosyl cucurbitacin E. Nasturtium-reared larvae were insensitive to chlorogenic acid, which was deterrent to cabbage-reared larvae. Feeding by larvae reared on a wheat germ diet was not deterred by these compounds. The results indicate that dietary experience can extensively affect larval sensitivity to feeding deterrents and that cross habituation of larvae to deterrents occurs in response to certain chemical constituents of nasturtium and wheat germ diet. Digitoxin, however, proved to be an exception. Larvae reared on either nasturtium or wheat germ diet were as sensitive to digitoxin as those reared on cabbage. Previous results have shown that rejectionof nasturtium by cabbage-reared larvae is due to the presence of strong feeding deterrents in this plant. However, more than 50% of 2nd instar larvae reared from neonate on cabbage leaves treated with strophanthidin, cymarin, erysimoside, digitoxigenin and digitoxin accepted nasturtium as a food source. 2-O-β-d-glucosyl cucurbitacin E, 2-O-β-d-glucosyl cucurbitacin I and rutin were also active in causing larvae to feed on nasturtium. Thus dietary exposure to unrelated plant chemicals can profoundly affect insect acceptance of a plant that contains feeding deterrents.  相似文献   

9.
Parasitism of the cabbage root fly, Delia radicum (L.) by the staphylinid Aleochara bilineata Gyllenhal and the cynipid Trybliographa rapae Westwood was examined in a cabbage monoculture and a mixed stand of cabbage undersown with white clover. Number of overwintering cabbage root fly pupae per plant was consistently reduced in the mixed stand, and the incidence of plants attacked by cabbage root fly was either reduced or not different in the mixed stand compared to cabbage monoculture. For both parasitoids, the probability of D. radicum attacked plants having at least one parasitized pupa increased with density of cabbage root fly pupae around the plant. For A. bilineata, this positive relation between presence of parasitism and host density was consistently stronger in cabbage monoculture than in cabbage undersown with clover. Location of a host plant by T. rapae was not consistently affected by the presence of clover. D. radicum attacked plants situated in the cabbage and clover mixture were found by T. rapae as easily as in cabbage monoculture. Overall, the total risk of parasitism for a cabbage root fly pupa by A. bilineata was reduced in the mixed stand compared to the cabbage monoculture, whereas the risk of parasitism by T. rapae was not consistently affected by clover. For both parasitoids, intensity of parasitism showed a variable relationship with host density on individual plants attacked by the cabbage root fly. Overall, in spite of consistently lower total density of pupae in the mixed cabbage—clover than in cabbage monoculture, the density of unparasitized pupae was reduced by the presence of non-host plants only in two of the four experiments. The results emphasize the need to include not only herbivore and crop, but also other plant species as well as natural enemies when evaluating management methods.  相似文献   

10.
Action thresholds, based on the percentage of plants infested, for the lepidopteran pest complex in fresh-market cabbage Brassica oleracea variety capitata were evaluated in 1996 and 1997 in southern Minnesota. Three lepidopteran pests are common in Minnesota, including the imported cabbageworm, Pieris (=Artogeia) rapae (L.), diamondback moth, Plutella xylostella (L.), and the cabbage looper, Trichoplusia ni (Hübner). Most of the thresholds tested included all three pests. However, because T. ni is often the most consistent and damaging pest in Minnesota, two thresholds were based solely on the percentage of plants infested with T. ni eggs and larvae. Action thresholds were also evaluated for their compatibility with a recently labeled biologically based insecticide, spinosad, and a conventional pyrethroid, permethrin. Although all three lepidopteran pests were present in both years of the study, P. rapae provided most of the pest pressure in 1996, and T. ni was most abundant in 1997. Compared with the 0% larval infestation treatment (approximately weekly sprays from early heading to harvest), all action thresholds resulted in less insecticide use (17- 80%), while maintaining high levels of marketability. Despite variable pest pressure between years, one of the thresholds based solely on T. ni (10% of plants infested with eggs or larvae) performed as well as each of the thresholds based on all three species combined. For both years, and compared with a weekly spray schedule from early heading to harvest (average of 5.5 sprays per year), use of the 10% T. ni egg or larval threshold resulted in an average of 36.5% (3.5 sprays) and 65% (2.0 sprays) fewer applications of spinosad and permethrin, respectively, with no significant loss in marketability. The results indicate that a variety of incidence-based action thresholds can be used to ensure the production of high-quality cabbage in the midwestern United States with only minimal applications of spinosad or permethrin.  相似文献   

11.
Headspace composition, collected from intact cabbage plants and cabbage plants infested with eitherPieris brassicae L. orP. rapae L. (Lepidoptera: Pieridae) first instar larvae, was determined by GC-MS. Twenty-one volatiles were identified in the headspace of intact plants. Twenty-two volatiles were identified in the headspace of plants infested byP. brassicae larvae, 2 of which, Z-3-hexenyl butyrate and Z-3-hexenyl isovalerate, were not detected in the headspace of either intact orP. rapae damaged plants. In the headspace of the latter, 21 compounds were identified, all of which which were also produced by intact plants. No significant quantitative differences were found between headspace composition of the plants damaged by one or the other caterpillar species. Major differences between intact and caterpillar-damaged plants in contribution to the headspace profile were revealed for hexyl acetate, Z-3-hexenyl acetate, myrcene, sabinene and 1,8-cineole. The larval endoparasitoidCotesia glomerata L. was attracted by the volatiles emanating fromB. oleracea damaged byP. brassicae first instar larvae.C. rubecula L., a specialized larval endoparasitoids ofP. rapae, was attracted by the volatiles released from theB. oleracea-P. rapae plant-host complex. This shows that cabbage plants kept under the conditions of headspace collection produce attractive volatiles for both parasitoids.  相似文献   

12.
The relative suitability of four plants was studied for larvae of Pieris rapae L. and its parasitoid Cotesia rubecula (Marshall). For unparasitized P. rapae, pupal dry weight and egg-pupa growth rate were higher on cabbage, radish and nasturtium than on Indian hedge mustard. Larval developmental rate and size were greatest for C. rubecula when its host was feeding on nasturtium. Wasp survival was not affected by the host insect/plant combination in which the parasitoid developed. These results indicate that the plant on which host larvae feed is an important factor in development of the parasitoid.  相似文献   

13.
An interaction apparently mediated by synomones (Nordlund et al., 1981) betweenDiaeretiella rapae (M'Intosh), a primary parasitoid and the cabbage aphid,Brevicoryne brassicae (L.), was investigated under field conditions. Direct application of an allylisothiocyanate emulsion at a rate of 0.25 ml per broccoli plant consistently gave higher aphid parasitization rates and/or number of wasps per plant than those observed on plants treated with 0.25 ml of water or with 0.25 ml of wild mustard extract. These results suggest the existence of a synomonemediated interaction between the species involved, indicating potential avenues to enhance field parasitization rates through manipulation of the chemical environment of cole cropping systems.   相似文献   

14.
G. M. Tatchell 《BioControl》1981,26(3):291-299
The effects of temperature and granulosis virus infection both on the development ofPieris rapae L. and the area of cabbage leaf consumed by larvae were investigated. The duration of the larval period increased from 12.9 days at 24°C to 45.3 days at 13°C. The thermal constant for larval development was 196.1 day °C above the threshold temperature of 9.4°C. The area of cabbage leaf consumed per day increased with larval age so that 5th instar larvae ate 70.9% of the total food consumption. Virus infection extended the larval instar in which death occurred and reduced the potential food consumption by as much as 99.6%. Larger virus doses reduced food consumption within the same instar more than smaller doses. The results are discussed in relation to the feasibility of using granulosis virus for the control ofP. rapae.
Résumé L'étude a porté sur les effets de la température et de l'infection provoquée par le virus de la granulose sur le développement dePieris rapae L. et la quantité de feuillage de chou consommée par les larves. La durée du stade larvaire a augmenté de 12,9 j à 24°C à 45,3 j à 13°C. La constante thermique pour le développement larvaire a été de 196,1°C au-delà du seuil de température de 9,4°C. La superficie de feuillage consommée par jour s'est accrue en fonction de l'age des larves de sorte que les larves au 5e stade ont mangé 70,9% de la superficie totale consommée. L'infection provoquée par le virus a augmenté la durée du stade de mortalité et a diminué la consommation potentielle de feuillage de 99,6%. Des doses plus élevées de virus ont réduit la consommation dans le même stade davantage que les doses plus faibles. Les résultats sont discutés par rapport à la possibilité d'utiliser le virus de la granulose dans la lutte biologique contreP. rapae.
  相似文献   

15.
We investigated the potential of heterorhabditid nematodes to control larvae of the black vine weevil, Otiorhynchus sulcatus (F.), in 2 field experiments in commercial strawberry plantings. In both experiments, nematodes were applied directly onto the straw mulch, or onto the soil after temporary removal of the mulch. Heterorhabditis marelatus Lui & Berry (Rhabditida: Heterorhabditidae) reduced numbers of weevil larvae and the percentage of plants infested in both experiments, irrespective of straw removal. In the 1st field experiment, a sponge-packed H. marelatus formulation produced lower numbers of O. sulcatus larvae per strawberry plant (mean O. sulcatus larvae per plant = 0.7) and proportion of infested plants (42%) compared with a vermiculite formulation (mean O. sulcatus larvae per plant = 1.8, proportion infested plants 67%) and an untreated control (mean O. sulcatus larvae per plant = 1.9, proportion infested plants 75%). In the first 2 wk after application, more H. marelatus were found in soil samples collected from plots treated with sponge-packed nematodes, than from plots treated with vermiculite-formulated nematodes. In the 2nd field experiment, sponge-packed formulations of H. bacteriophora Poinar (Rhabditida: Heterorhabditidae) and H. marelatus were tested. H. marelatus caused a reduction in both numbers of weevil larvae (mean O. sulcatus larvae per plant = 0.1) and proportion of infested plants (9%) but H. bacteriophora did not (mean O. sulcatus larvae per plant = 0.45, proportion infested plants 34%). More H. bacteriophora were recovered from soil samples than H. marelatus during the first 7 d of this experiment. However, laboratory studies revealed no difference in the persistence of these 2 nematodes in sand.  相似文献   

16.
Potato tuber worm (PTW), Phthorimaea operculella (Zeller), is a world-wide pest of potato. In rustic stores, PTW larvae can infest 100% of stored tubers. Treatment of tubers in rustic stores with the PTW granulovirus (PoGV) has been demonstrated to protect stored tubers. This is the first study to show the effects of PoGV for protection of tubers stored in refrigerated warehouse conditions. Tubers were treated by dipping in aqueous suspensions of PoGV or water. An estimated 0.0819 larval equivalents of virus or 1.88×109 viral occlusion bodies were deposited on each kilogram of tubers. They were held at 16°C for 11 days before lowering the temperature by 0.5°C per day until 10°C was reached. The tubers were stored at this temperature for 53 days. Mean numbers of infested tubers at the end of the assay was affected by both pre-infestation rate and virus treatment. Mean numbers of infested tubers in the control treatment was 3 tubers per chamber higher than in the virus treatment providing strong evidence that PoGV controlled larvae and minimized spread into un-infested tubers. Of the larvae that were retrieved in virus-treated infested tubers, the mean mortality was 87% compared to 37% in controls.  相似文献   

17.
To determine the importance of beetle predators on the natural control of cabbage root fly, experiments were carried out in 1958 and 1959 using various types of barriers to obtain different levels of beetle populations on cauliflower plots. A barrier of DDT-treated straw, placed in the soil around some plots, decreased the numbers of beetles within them and allowed a greater number of eggs and larvae of cabbage root fly to survive than on the untreated plots, resulting in a greater crop damage. Another type of barrier allowed the beetles to enter plots but made it difficult for them to leave. On these, fewer cabbage root-fly eggs and larvae survived and the crop damage was much less than on the plots surrounded by straw barriers. Where plants were treated with insecticide the root-fly population was reduced to a minimum and crop yields were considerably increased. The insecticide, however, caused a reduction in the numbers of predatory beetles.  相似文献   

18.
Concentrations of the nuclear-polyhedrous virus (T. ni NPV) and the granulosis virus (T. ni GV) of the cabbage looper, Trichoplusia ni, in soil and on foliage were monitored up to 4 years after treatment.A single application of T. ni NPV to soil in August or 5 foliar applications of the virus at 10-day intervals in August and early September maintained substantial concentrations of the virus on foliage and high concentrations of the virus accumulated in soil. With development of natural epizootics of the virus disease in populations of the host larvae in September and October, substantial concentrations of the virus accumulated in soil and on foliage in nontreated plots, eventually becoming equal in amount with the virus in virus-treated plots. The virus accumulated more slowly in plots treated with chemical insecticides or Bacillus thuringiensis because few host larvae survived to support late-season epizootics of the disease. Small quantities of T. ni NPV were detected in heads of cabbage harvested from the plots in October.Long-term studies in which nontreated plots and plots treated with T. ni NPV or T. ni GV were replanted for up to 4 years after treatment showed that concentrations of T. ni NPV in surface soil remained constant during the winter but were reduced by dilution during cultivation preparatory to planting in the spring. T. ni NPV accumulated during the late summer and autumn with development of epizootics of the disease in populations of host larvae. Increased concentrations of the virus in soil coincided with increased concentrations on leaves in each year. T. ni GV did not persist on leaves or in soil following application and only small amounts were found 2 years after application.T. ni NPV disease was prevalent in September and October in populations of host larvae in plots in which substantial residues of the virus were found. These epizootics contributed substantially to late-season control of the looper after completion of spraying.  相似文献   

19.
To study the effects of plant density on populations of the cabbage root fly (Erioischia brassicae), cabbage, cauliflower, Brussels sprout and swede were each planted in plots with twenty-four concentric circles of plants at spacings ranging from 10 to 90 cm between the individual plants. Plants treated with a root drench of chlorfenvinphos and untreated plants were each sampled at ten plant densities which ranged from 1–5 to 68-3 plants/m2. In the absence of insecticide, the numbers of overwintering cabbage root fly pupae produced ranged from c. four per m2 at the lowest plant density to 200 per m2 at the highest. The number of pupae per m2 was proportional to plant density to the powers 0–98,0-77,0–69 and o-6i for the swede, cauliflower, cabbage and Brussels sprout crops, respectively. The magnitude of each cabbage root fly population was determined mainly by plant density but also by the cultivar used as host plant. The results suggested that, in a given locality, when changing from low to high plant density crops during a growing season it should be unnecessary to apply insecticide to control cabbage root fly; conversely, a change from high to low plant densities would necessitate an extremely efficient application of insecticide.  相似文献   

20.
Two species of predaceous mites,Amblyseius barkeri (Hughes) [=A. mckenziei Schuster & Pritchard] andA. cucumeris (Oudemans) [Acarina: Phytoseiidae] were evaluated as potential biological control agents forThrips tabaci Lindeman [Thysanoptera: Thripidae] on cabbage.A. barkeri colonized cabbage heads in preliminary trials. Field releases of different numbers of mites per plant during 1987 showed thatA. barkeri reduced the number of thrips in cabbage heads at harvest, and the reduction was proportional to the number of mites released, but thrips damage was unaffected. ReleasingA. cucumeris at different times during 1988, but releasing the same number of mites each time, we found that earlier releases resulted in fewer thrips and less damage at harvest; these relationships were not present, however, in plots treated with pyrethroid insecticides. We conclude that inoculative release ofAmblyseius spp. is a potentially useful thrips management strategy, but improvements in release timing and strategy will be required to provide commercially acceptable control.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号