首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD154 (CD40 ligand, gp39) interaction with its receptor CD40 has been shown to be critically important for the generation of cell-mediated as well as humoral immunity. It has been proposed that ligation of CD40 on APCs, presumably by activated Th cells, leads to increased APC function as defined by up-regulation of costimulatory molecules and enhancement of IL-12 production. In this report, we directly examined the contribution of the CD154:CD40 pathway in a murine model of allograft rejection. Generation of both the CTL and alloantibody responses following injection with allogeneic P815 tumor cells was severely compromised in CD154 knockout mice and wild-type C57BL/6 mice treated with the anti-CD154 mAb, MR1. Splenic production of IL-2, IFN-gamma, and TNF was significantly suppressed from CD154-deficient mice, indicating a lack of T cell priming. However, splenic cells from CD154 knockout mice induced comparable levels of CD86 expression and IL-12 production when compared with their wild-type littermates. The treatment of CD154-/- mice with the agonistic anti-CD40 mAb, FGK45, generated activated APCs yet failed to restore either the CTL or alloantibody responses to P815. Likewise, immunization with B7-transfected P815 tumor cells failed to generate expansion of the CTL effector population in CD154-/- mice. These results suggest that the generation of allograft immunity is dependent on the interaction of CD154 with CD40 but not primarily for the activation of APCs.  相似文献   

2.
Interaction between CD154 (CD40 ligand) on activated T lymphocytes and its receptor CD40 has been shown to be critically involved in the generation of cell-mediated as well as humoral immunity. CD40 triggering activates dendritic cells (DC), enhances their cytokine production, up-regulates the expression of costimulatory molecules, and induces their maturation. It is unknown how stimulation of CD40 during sensitization to an airborne allergen may affect the outcome of allergic airway inflammation. We took advantage of a mouse model of allergic asthma and a stimulatory mAb to CD40 (FGK45) to study the effects of CD40-mediated DC activation on sensitization to OVA and subsequent development of OVA-induced airway inflammation. Agonistic anti-CD40 mAb (FGK45) injected during sensitization with OVA abrogated the development of allergic airway inflammation upon repeated airway challenges with OVA. Inhibition of bronchial eosinophilia corresponded with reduced Th2 cytokine production and was independent of IL-12, as evidenced by a similar down-regulatory effect of anti-CD40 mAb in IL-12 p40-deficient mice. In addition, FGK45 equally down-regulated allergic airway inflammation in IL-10-deficient mice, indicating an IL-10-independent mechanism of action of FGK45. In conclusion, our results show that CD40 signaling during sensitization shifts the immune response away from Th2 cytokine production and suppresses allergic airway inflammation in an IL-12- and IL-10-independent way, presumably resulting from enhanced DC activation during sensitization.  相似文献   

3.
IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells   总被引:6,自引:0,他引:6  
The cellular and humoral immune system is critically dependent upon CD40-CD154 (CD40 ligand) interactions between CD40 expressed on B cells, macrophages, and dendritic cells, and CD154 expressed primarily on CD4 T cells. Previous studies have shown that CD154 is transiently expressed on CD4 T cells after T cell receptor engagement in vitro. However, we found that stimulation of PBLs with maximal CD28 costimulation, using beads coupled to Abs against CD3 and CD28, led to a very prolonged expression of CD154 on CD4 cells (>4 days) that was dependent upon autocrine IL-2 production. Previously activated CD4 T cells could respond to IL-2, or the related cytokine IL-15, by de novo CD154 production and expression without requiring an additional signal from CD3 and CD28. These results provide evidence that CD28 costimulation of CD4 T cells, through autocrine IL-2 production, maintains high levels of CD154 expression. This has significant impact on our understanding of the acquired immune response and may provide insight concerning the mechanisms underlying several immunological diseases.  相似文献   

4.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

5.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

6.
CD154 is transiently expressed by activated T cells and interacts with CD40 on B cells, dendritic cells, macrophages, and monocytes. This costimulatory receptor-ligand couple seems decisive in Ag-driven immune responses but may be differentially involved in type 1 vs type 2 responses. We studied the importance of CD40-CD154 in both responses using the reporter Ag popliteal lymph node assay in which selectively acting drugs generate clearly polarized type 1 (streptozotocin) or type 2 (D-penicillamine, diphenylhydantoin) responses to a constant coinjected Ag in the same mouse strain. Treatment of mice with anti-CD154 reduced characteristic immunological parameters in type 2 responses (B and CD4(+) T cell proliferation, IgG1 and IgE Abs, and IL-4 secretion) and only slightly affected the type 1 response (small decrease in IFN-gamma production, influx of CD11c(+) and F4/80(+) cells, and prevention of architectural disruption of the lymph node, but no effect on IgG2a Ab and TNF-alpha secretion or B and CD4(+) T cell proliferation). The findings indicate that the CD40-CD154 costimulatory interaction is a prerequisite in drug-induced type 2 responses and is only marginally involved in type 1 responses. The observed expression patterns of CD80 and CD86 on different APC (B cells in type 2 and dendritic cells in type 1) may be responsible for this discrepancy.  相似文献   

7.
Dendritic cells produce IL-12 both in response to microbial stimuli and to T cells, and can thus skew T cell reactivity toward a Th1 pattern. We investigated the capacity of dendritic cells to elaborate IL-12 with special regard to their state of maturation, different maturation stimuli, and its regulation by Th1/Th2-influencing cytokines. Monocyte-derived dendritic cells were generated with GM-CSF and IL-4 for 7 days, followed by another 3 days +/- monocyte-conditioned media, yielding mature (CD83(+)/dendritic cell-lysosome-associated membrane glycoprotein(+)) and immature (CD83(-)/dendritic cell-lysosome-associated membrane glycoprotein(-)) dendritic cells. These dendritic cells were stimulated for another 48 h, and IL-12 p70 was measured by ELISA. We found the following: 1) Immature dendritic cells stimulated with CD154/CD40 ligand or bacteria (both of which concurrently also induced maturation) secreted always more IL-12 than already mature dendritic cells. Mature CD154-stimulated dendritic cells still made significant levels (up to 4 ng/ml). 2) Terminally mature skin-derived dendritic cells did not make any IL-12 in response to these stimuli. 3) Appropriate maturation stimuli are required for IL-12 production: CD40 ligation and bacteria are sufficient; monocyte-conditioned media are not. 4) Unexpectedly, IL-4 markedly increased the amount of IL-12 produced by both immature and mature dendritic cells, when present during stimulation. 5) IL-10 inhibited the production of IL-12. Our results, employing a cell culture system that is now being widely used in immunotherapy, extend prior data that IL-12 is produced most abundantly by dendritic cells that are beginning to respond to maturation stimuli. Surprisingly, IL-12 is only elicited by select maturation stimuli, but can be markedly enhanced by the addition of the Th2 cytokine, IL-4.  相似文献   

8.
Monocytes attracted by tumor-induced chronic inflammation differentiate to APCs, the type of which depends on cues in the local tumor milieu. In this work, we studied the influence of human cervical cancer cells on monocyte differentiation and showed that the majority of cancer cells either hampered monocyte to dendritic cell differentiation or skewed their differentiation toward M2-like macrophages. Blocking studies revealed that M2 differentiation was caused by tumor-produced PGE(2) and IL-6. TGF-β, IL-10, VEGF, and macrophage colony-stimulating factor did not play a role. Notably, these CD14(+)CD163(+) M2 macrophages were also detected in situ. Activation of cancer cell-induced M2-like macrophages by several TLR-agonists revealed that compared with dendritic cells, these M2 macrophages displayed a tolerogenic phenotype reflected by a lower expression of costimulatory molecules, an altered balance in IL-12p70 and IL-10 production, and a poor capacity to stimulate T cell proliferation and IFN-γ production. Notably, upon cognate interaction with Th1 cells, these tumor-induced M2 macrophages could be switched to activated M1-like macrophages that expressed high levels of costimulatory molecules, produced high amounts of IL-12 and low amounts of IL-10, and acquired the lymphoid homing marker CCR7. The effects of the interaction between M2 macrophages and Th1 cells could partially be mimicked by activation of these APCs via CD40 in the presence of IFN-γ. Our data on the presence, induction, and plasticity of tumor-induced tolerogenic APCs in cervical cancer suggest that tumor-infiltrated Th1 cells can stimulate a tumor-rejecting environment by switching M2 macrophages to classical proinflammatory M1 macrophages.  相似文献   

9.
Crescentic glomerulonephritis (GN) results from IL-12-driven Th1-directed cell-mediated responses (akin to delayed-type hypersensitivity (DTH)) directed against glomerular Ags. CD40-CD154 interactions are critical for IL-12 production and Th1 polarization of immune responses. Crescentic anti-glomerular basement membrane GN was induced in C57BL/6 (wild-type (WT)) mice (sensitized to sheep globulin) by planting this Ag (as sheep anti-mouse glomerular basement membrane globulin) in their glomeruli. Crescentic GN did not develop in CD40(-/-) mice due to significantly reduced nephritogenic Th1 responses. IL-12 was administered to CD40(-/-) mice with GN to dissect interactions between IL-12 and CD40 in inducing nephritogenic immunity and injury. Administration of IL-12 to CD40(-/-) mice restored Th cell IFN-gamma production, and up-regulated intrarenal chemokines and glomerular T cell and macrophage accumulation compared with WT control mice. Despite this, renal macrophages were not activated and renal injury and dermal DTH were not restored. Thus, CD40-directed IL-12 drives Th1 generation and effector cell recruitment but CD40 is required for activation. To test this hypothesis, activated OT-II OVA-specific CD4(+) cells and OVA(323-339)-loaded nonresponsive APCs were transferred into footpads of WT, CD40(-/-), and macrophage-depleted WT mice. WT mice developed significant DTH compared with CD40(-/-) and macrophage-depleted WT mice. This study demonstrated that CD40-induced IL-12 is required for generation of systemic Th1 immunity to nephritogenic Ags, and that IL-12 enhances Th1 effector cell recruitment to peripheral sites of Ag presentation via generation of local chemokines. Effector cell activation, renal DTH-like injury, and dermal DTH require direct Th1 CD154/macrophage CD40 interactions.  相似文献   

10.
Maturation of dendritic cells (DCs) is critical for initiation of immune responses and is regulated by various stimulatory signals. We assessed the role of galectin (Gal)-9 in DC maturation. Culture of immature DCs with exogenous Gal-9 markedly increased the surface expression of CD40, CD54, CD80, CD83, CD86, and HLA-DR in a dose-dependent manner, although Gal-9 had no or little effect on differentiation of human monocytes into immature DCs. Gal-9-treated DCs secreted IL-12 but not IL-10, and they elicited the production of Th1 cytokines (IFN-gamma and IL-2) but not that of the Th2 cytokines (IL-4 and IL-5) by allogeneic CD4+ T cells. These effects of Gal-9 on immature DCs were not essentially dependent on its lectin properties, given that they were inhibited only slightly by lactose. We further found that a Gal-9 mutant that lacks beta-galactoside binding activity reproduced the above activities and that an anti-Gal-9 mAb suppressed them. Gal-9 induced phosphorylation of the MAPK p38 and ERK1/2 in DCs, and an inhibitor of p38 signaling, but not inhibitors of signaling by either ERK1/2 or PI3K, blocked Gal-9-induced up-regulation of costimulatory molecule expression and IL-12 production. These findings suggest that Gal-9 plays a role not only in innate immunity but also in acquired immunity by inducing DC maturation and promoting Th1 immune responses.  相似文献   

11.
During sensitization with dinitrofluorobenzene for contact hypersensitivity (CHS) responses, hapten-specific CD8(+) T cells develop into IFN-gamma-producing cells, and CD4(+) T cells develop into IL-4/IL-5-producing cells. Administration of IL-12 during sensitization skews CD4(+) T cell development to IFN-gamma-producing cells, resulting in exaggerated CHS responses. In the current report we tested the role of IL-12 on CD8(+) T cell development during sensitization and elicitation of CHS to dinitrofluorobenzene. Administration of IL-12 during hapten sensitization induced the expression of IL-12Rbeta2 on both CD4(+) and CD8(+) T cells, augmented IFN-gamma production by these T cell populations, and increased the magnitude and duration of the CHS response to hapten challenge. CHS responses were virtually identical in wild-type and IL-12 p40(-/-) mice. Since engagement of CD40 on APC may stimulate IL-12 production, we also tested the role of CD40-CD154 interactions on the development of IFN-gamma-producing CD4(+) and CD8(+) T cells following hapten sensitization. Development of IFN-gamma-producing CD4(+) T cells during hapten sensitization was absent in wild-type mice treated with anti-CD154 mAb or in CD154(-/-) mice. In contrast, the absence of CD40-CD154 signaling had little or no impact on the development of IFN-gamma-producing CD8(+) T cells. These results demonstrate that the development of hapten-specific Th1 effector CD4(+) T cells in CHS requires both CD40-CD154 interactions and IL-12, whereas the development of IFN-gamma-producing effector CD8(+) T cells can occur independently of these pathways.  相似文献   

12.
LPS potently induces dendritic cell maturation and the production of proinflammatory cytokines, such as IL-12, by activation of Toll-like receptor 4 (TLR4). Since IL-12 is important for the generation and maintenance of Th1 responses and may also inhibit Th2 cell generation from naive CD4 T cell precursors, it has been inferred that TLR4 signaling would have similar effects via the induction of IL-12 secretion. Surprisingly, we found that TLR4-defective mice subjected to sensitization and pulmonary challenge with a protein allergen had reductions in airway inflammation with eosinophils, allergen-specific IgE levels, and Th2 cytokine production, compared with wild-type mice. These reduced responses were attributable, at least in part, to decreased dendritic cell function: Dendritic cells from TLR4-defective mice expressed lower levels of CD86, a costimulatory molecule important for Th2 responses. They also induced less Th2 cytokine production by antigenically naive CD4 T cells in vitro and mediated diminished CD4 T cell Ag-specific pulmonary inflammation in vivo. These results indicate that TLR4 is required for optimal Th2 responses to Ags from nonpathogenic sources and suggest a role for TLR4 ligands, such as LPS derived from commensal bacteria or endogenously derived ligands, in maturation of the innate immune system before pathogen exposure.  相似文献   

13.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

14.
Stat6-dependent and -independent pathways for IL-4 production   总被引:10,自引:0,他引:10  
Stat6 has been shown to have a crucial role in the IL-4-dependent differentiation of Th2 cells. In this report, we explore whether in vitro Th2 differentiation driven by altered costimulatory signals or Ag dose is Stat6 dependent. We find that blocking B7-1 signaling in vitro promotes the differentiation of IL-4-secreting Th2 cells in wild-type but not Stat6-deficient T cell cultures. Additionally, stimulation with peptide Ag doses that normally result in the production of Th2 cells in vitro fails to do so in cultures of Stat6-deficient cells. We also demonstrate that Stat6 is required for the in vitro differentiation of CD8+ T cells into IL-4-secreting cytotoxic T cell type 2 cells. However, IL-4 expression is not absolutely dependent on Stat6. We demonstrate that populations of T cells that do not require IL-4 for their development, such as NK T cells, are still competent to secrete IL-4 in the absence of Stat6. These results demonstrate that Stat6 is required for the differentiation program leading to the generation of Th2 and cytotoxic T cell type 2 cells but not for IL-4 expression in cells that do not undergo differentiation in response to IL-4.  相似文献   

15.
A major goal of the transplant field is to selectively tolerize only those donor T cells recognizing host alloantigen and mediating graft-vs-host disease (GVHD). Recently, we described an ex vivo approach in which the blockade of the CD40 ligand (CD40L):CD40 costimulatory pathway in bulk MLR cultures induces donor CD4+ T cells to become specifically tolerant to MHC class II-disparate alloantigenic-bearing stimulators, resulting in a profound reduction in GVHD generation in vivo. In studies presented in this work, we investigated the ex vivo requirements for tolerance induction. We found that CD4+ T cells become profoundly more hyporesponsive to alloantigen restimulation with prolonged culture duration such that 7 to 10 but not 4 days is needed to achieve maximum alloantigen hyporesponsiveness as assessed in secondary MLR cultures and GVHD generation. By day 7, both primed and tolerized cells had substantially increased blastogenesis and CD25 expression. Primed but not tolerized cells substantially down-regulated L-selectin expression, indicating that the tolerized cells do not become fully Ag experienced. Both Th1 and Th2 cytokine production is severely impaired by CD40L:CD40 blockade. Analysis of culture supernatants and results from IL-4 and IL-10 knockout mice indicated that GVHD prevention was not mediated by a skewing toward a Th2 phenotype. The addition of IL-4 to the cultures as a survival factor precluded the induction of tolerance in the anti-CD40L-cultured cells. These data provide further impetus for the ex vivo use of anti-CD40L mAb to block GVHD generation.  相似文献   

16.
Pertussis toxin (PTX) has potent immunologic adjuvant activity in vivo and concomitantly enhances both T helper type (Th1) and Th2 cytokine responses. The PTX-induced enhancement of Th1 and Th2 immunity is mediated via the activation of antigen presenting cells (APCs), but the underlying mechanism is not known. Here we asked whether the adjuvant activity of PTX on T cell immunity was mediated by cytokines and/or costimulatory signals. The results show that in vivo blockade of CD28-CD80/86 costimulation essentially abrogated PTX-mediated enhancement of antigen-specific Th1 and Th2 responses. Blockade of CD40L-CD40 interactions was less efficient in inhibiting PTX-mediated enhancement of Th1 and Th2 responses. In contrast, the adjuvant activity of PTX was not mediated via cytokines, because neither Th1 nor Th2 responses were substantially impaired in mice deficient for IL-12, IFN-gamma, IL-4, IL-5, or IL-6. Collectively, the data suggest that PTX mediates its adjuvant effects on T cell cytokine differentiation and clonal expansion via the modulation of costimulatory molecules on APCs. Understanding the costimulatory pathways targeted by PTX could lead to the design of novel adjuvants that selectively induce Th1 or Th2 immunity.  相似文献   

17.
Strength of T cell antigen receptor (TCR) signaling drives the development of Th1 and Th2 subsets from naive T helper precursors. The quantity of interleukin-12 (IL-12) from antigen presenting cells (APC) is also profoundly involved in Th development. TCR signal strength and IL-12 production from dendritic cells (DCs) are linked by CD40 ligand (CD40L) expression on activated T cells. CD40L on the activated T cells interacts with CD40 on DC, resulting in induction of IL-12 from DCs. However, the subsets of DC in spleen that produce the IL-12 have not been clearly identified. Purification of DC subsets itself may provide maturation signals to immature DCs. Thus, we used non-purified mouse spleen cells to analyze IL-12 producing cells, near to steady states, during the interaction of naive T cells either with or without agonist. Mature CD86highCD8alpha- DCs in spleen mainly produced IL-12p40 after stimulation of high dose agonist. The ratio of CD40L positive T cells and IL-12p40 secreting CD86high DCs correlated with the concentration of agonist and Th1 development. However, anti-IL-12 did not completely inhibit the Th1 development. Altogether, strength of TCR signaling directs Th cell development by regulating CD40L expression on T cells which determines production of IL-12p40 from CD86high CD8alpha- DC via CD40.  相似文献   

18.
19.
We compared splenic DC activation during infection with either the Th2 response-inducing parasite Schistosoma mansoni or with the Th1 response-inducing parasite Toxoplasma gondii. CD8alpha(+) DC from schistosome-infected mice exhibited a 2- to 3-fold increase in the expression of MHC class II, CD80, and CD40 (but not CD86) compared with DC from uninfected control animals, while CD8alpha(-) DC exhibited a 2- to 3-fold increase in the expression of MHC class II and CD80 and no alteration, compared with DC from uninfected mice, in the expression of CD86 or CD40. Intracellular staining revealed that DC did not produce IL-12 during infection with S. mansoni. In contrast, infection with T. gondii resulted in a more pronounced increase in the expression of activation-associated molecules (MHC class II, CD80, CD86, and CD40) on both CD8alpha(-) and CD8alpha(+) splenic DC and promoted elevated IL-12 production by DC. Analysis of MHC class I and of additional costimulatory molecules (ICOSL, ICAM-1, OX40L, 4-1BBL, and B7-DC) revealed a generally similar pattern, with greater indication of activation in T. gondii-infected mice compared with S. mansoni-infected animals. Strikingly, the activation of DC observed during infection with either parasite was not apparent in DC from infected CD154(-/-) mice, indicating that CD40/CD154 interactions are essential for maintaining DC activation during infection regardless of whether the outcome is a Th1 or a Th2 response. However, the ability of this activation pathway to induce IL-12 production by DC is restrained in S. mansoni-infected, but not T. gondii-infected, mice by Ag-responsive CD11c(-) cells.  相似文献   

20.
The mechanisms of how Th cells promote CD8(+) T cell responses during viral infections are largely unknown. In this study, we unraveled the mechanisms of T cell help for CD8(+) T cell responses during vaccinia virus infection. Our results demonstrate that Th cells promote vaccinia virus-specific CD8(+) T cell responses via two interconnected synergistic pathways: First, CD40L expressed by activated CD4(+) T cells instructs dendritic cells to produce bioactive IL-12p70, which is directly sensed by Ag-specific CD8(+) T cells, resulting in increased IL-2Rα expression. Second, Th cells provide CD8(+) T cells with IL-2, thereby enhancing their survival. Thus, Th cells are at the center of an important communication loop with a central role for IL-2/IL-2R and bioactive IL-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号