首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic control of root development in rice is complex and the underlying mechanisms (constitutive and adaptive) are poorly understood. Lowland and upland varieties of indica and japonica rice with contrasting root development characteristics have been crossed, mapping populations developed and a number of QTLs in different chromosomes were identified. As these studies have used different sets of markers and many of the QTLs identified are long, it is difficult to exploit the varietal difference for improved root traits by marker assisted selection and for identification of concerned alleles. Intensive data mining of literature resulted in the identification 861 root development QTLs and associated microsatellite markers located on different chromosomes. The QTL and marker data generated and the genome sequence of rice were used for construction of a relational database, Rootbrowse, using MySQL relational database management system and Bio::DB::GFF schema. The data is viewed using GBrowse visualization tool. It graphically displays a section of the genome and all features annotated on it including the QTLs. The QTLs can be displayed along with SSR markers, protein coding genes and/or known root development genes for prediction of probable candidate genes.  相似文献   

2.
While informative, protein amounts and physical protein associations do not provide a full picture of protein function. This Commentary highlights the potential of structural and stability proteomic technologies to derive new insights in biology and medicine.

The ultimate goal of proteomics is to provide a holistic view of the biological processes that explain phenotypes. To this end, proteomics approaches have been frequently used to map protein expression in multiple experimental conditions and to identify protein–protein interactions. While informative to a certain extent, protein amounts and physical protein associations do not provide a full picture of protein function. Here, we highlight the novel insights that are made possible in biology and medicine by structural and stability proteomic technologies.  相似文献   

3.
4.
The ecotype population of goats (Capra hircus) was created by long‐term artificial selection and natural adaptation. Mile red‐bone goat is an indigenous breed with visible red bones, and its special bone structure has received extensive attention. This study aimed to identify genetic variants and candidate genes associated with specific bone phenotypes using next‐generation sequencing technology (NGS). The results revealed that 31,828,206 single nucleotide polymorphisms (SNPs) were obtained from 72 goats (20 Mile red‐bone goats and 52 common goats) by NGS. A total of 100 candidate genes were identified on the basis top 1% window interaction from nucleotide diversity (π), π ratio (π A/π B), and pairwise fixation index (F ST). Exactly 77 known signaling pathways were enriched. Specifically, three coding genes (NMNAT2, LOC102172983, and PNLIP) were annotated in the vitamin metabolism signaling pathways, and NCF2 was annotated to the osteoclast (OC) differentiation pathway. Furthermore, 5862 reliable copy number variations (CNVs) were obtained, and 14 and 24 genes were annotated with the top 1‰ CNV based on F ST (>0.490) and V ST (>0.527), respectively. Several pathways related to bone development and metabolism of exogenous substances in vivo, including calcium signaling pathway, OC differentiation, and glycerophospholipid metabolism, were annotated. Specifically, six genes from 19 candidate CNVs, which were obtained by interaction of the top 1‰ CNVs with F ST and V ST, were annotated to mucin‐type O‐glycan biosynthesis and metabolic pathways. Briefly, the results implied that pseudopurpurin and specific genetic variants work together to contribute to the red‐bone color and specific bone structure of Mile red‐bone goat. This study is helpful to understanding the genetic basis of the unique bone phenotype of Mile red‐bone goats.  相似文献   

5.
6.
7.
The highly contagious Delta variant of SARS‐CoV‐2 has become a prevalent strain globally and poses a public health challenge around the world. While there has been extensive focus on understanding the amino acid mutations in the Delta variant’s Spike protein, the mutational landscape of the rest of the SARS‐CoV‐2 proteome (25 proteins) remains poorly understood. To this end, we performed a systematic analysis of mutations in all the SARS‐CoV‐2 proteins from nearly 2 million SARS‐CoV‐2 genomes from 176 countries/territories. Six highly prevalent missense mutations in the viral life cycle‐associated Membrane (I82T), Nucleocapsid (R203M, D377Y), NS3 (S26L), and NS7a (V82A, T120I) proteins are almost exclusive to the Delta variant compared to other variants of concern (mean prevalence across genomes: Delta = 99.74%, Alpha = 0.06%, Beta = 0.09%, and Gamma = 0.22%). Furthermore, we find that the Delta variant harbors a more diverse repertoire of mutations across countries compared to the previously dominant Alpha variant. Overall, our study underscores the high diversity of the Delta variant between countries and identifies a list of amino acid mutations in the Delta variant’s proteome for probing the mechanistic basis of pathogenic features such as high viral loads, high transmissibility, and reduced susceptibility against neutralization by vaccines.  相似文献   

8.
9.
Farming of fungi by ants, termites, or beetles has led to ecologically successful societies fueled by industrial‐scale food production. Another type of obligate insect agriculture in Fiji involves the symbiosis between the ant Philidris nagasau and epiphytes in the genus Squamellaria (Rubiaceae) that the ants fertilize, defend, harvest, and depend on for nesting. All farmed Squamellaria form tubers (domatia) with preformed entrance holes and complex cavity networks occupied by P. nagasau. The inner surface of the domatia consists of smooth‐surfaced walls where the ants nest and rear their brood, and warty‐surfaced walls where they fertilize their crop by defecation. Here, we use RNA sequencing to identify gene expression patterns associated with the smooth versus warty wall types. Since wall differentiation occurred in the most recent common ancestor of all farmed species of Squamellaria, our study also identifies genetic pathways co‐opted following the emergence of agriculture. Warty‐surfaced walls show many upregulated genes linked to auxin transport, root development, and nitrogen transport consistent with their root‐like function; their defense‐related genes are also upregulated, probably to protect these permeable areas from pathogen entry. In smooth‐surfaced walls, genes functioning in suberin and wax biosynthesis are upregulated, contributing to the formation of an impermeable ant‐nesting area in the domatium. This study throws light on a number of functional characteristics of plant farming by ants and illustrates the power of genomic studies of symbiosis.  相似文献   

10.
11.
Privileged by rapid increase in available epigenomic data, epigenome‐wide association studies (EWAS) are to make a profound contribution to understand the molecular mechanism of DNA methylation in cognitive aging. Current statistical methods used in EWAS are dominated by models based on multiple assumptions, for example, linear relationship between molecular profiles and phenotype, normal distribution for the methylation data and phenotype. In this study, we applied an assumption‐free method, the generalized correlation coefficient (GCC), and compare it to linear models, namely the linear mixed model and kinship model. We use DNA methylation associated with a cognitive score in 400 and 206 twins as discovery and replication samples respectively. DNA methylation associated with cognitive function using GCC, linear mixed model, and kinship model, identified 65 CpGs (p < 1e‐04) from discovery sample displaying both nonlinear and linear correlations. Replication analysis successfully replicated 9 of these top CpGs. When combining results of GCC and linear models to cover diverse patterns of relationships, we identified genes like KLHDC4, PAPSS2, and MRPS18B as well as pathways including focal adhesion, axon guidance, and some neurological signaling. Genomic region‐based analysis found 15 methylated regions harboring 11 genes, with three verified in gene expression analysis, also the 11 genes were related to top functional clusters including neurohypophyseal hormone and maternal aggressive behaviors. The GCC approach detects valuable methylation sites missed by traditional linear models. A combination of methylation markers from GCC and linear models enriched biological pathways sensible in neurological function that could implicate cognitive performance and cognitive aging.  相似文献   

12.
Accumulating evidence suggests a higher risk for cardiovascular diseases among individuals with mental disorders, but very little is known about the risk for overall and specific groups of cardiovascular diseases in people with attention‐deficit/hyperactivity disorder (ADHD). To fill this knowledge gap, we investigated the prospective associations between ADHD and a wide range of cardiovascular diseases in adults. In a nationwide population‐based cohort study, we identified 5,389,519 adults born between 1941 and 1983, without pre‐existing cardiovascular diseases, from Swedish registers. The study period was from January 1, 2001 to December 31, 2013. Incident cardiovascular disease events were identified according to ICD codes. Hazard ratios (HR) with 95% confidence intervals (CI) were calculated using Cox proportional hazards regression model, with ADHD as a time‐varying exposure. After an average 11.80 years of follow‐up, 38.05% of individuals with ADHD versus 23.57% of those without ADHD had at least one diagnosis of cardiovascular disease (p<0.0001). ADHD was significantly associated with increased risk of any cardiovascular disease (HR=2.05, 95% CI: 1.98‐2.13) after adjusting for sex and year of birth. Further adjustments for education level, birth country, type 2 diabetes mellitus, obesity, dyslipidemia, sleep problems and heavy smoking attenuated the association, which however remained significant (HR=1.84, 95% CI: 1.77‐1.91). Further adjustment for psychiatric comorbidities attenuated but could not fully explain the association (HR=1.65, 95% CI: 1.59‐1.71). The strongest associations were found for cardiac arrest (HR=2.28, 95% CI: 1.81‐2.87), hemorrhagic stroke (HR=2.16, 95% CI: 1.68‐2.77), and peripheral vascular disease/arteriosclerosis (HR=2.05, 95% CI: 1.76‐2.38). Stronger associations were observed in males and younger adults, while comparable associations were found among individuals with or without psychotropic medications and family history of cardiovascular diseases. These data suggest that ADHD is an independent risk factor for a wide range of cardiovascular diseases. They highlight the importance of carefully monitoring cardiovascular health and developing age‐appropriate and individualized strategies to reduce the cardiovascular risk in individuals with ADHD.  相似文献   

13.
Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)–monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single‐year decline in the western monarch population. Our results show early‐ and late‐season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early‐season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early‐spring migrant female monarchs select earlier‐emerging plants to balance a seasonal trade‐off between increasing host plant quantity and decreasing host plant quality. Late‐season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late‐season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom‐up, top‐down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed–monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.  相似文献   

14.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

15.
Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales. Our framework is developed under different scenarios: when speciation is mediated by geographical or resource‐partitioning opportunities, and when diversity is limited or not. We also discuss how organismal intrinsic properties and different overall geographical settings can influence the tempo and mode of speciation. We argue that specific conditions observed at the microscale might produce a pulse in speciation rates even without a pulse in either climate or physical barriers. We also propose a hypothesis to reconcile the apparent inconsistency between speciation measured at the microscale and macroscale, and emphasize that diversification rates are better seen as an emergent property. We hope to bring the reader''s attention to interesting mechanisms to be further studied, to motivate the development of new theoretical models that connect microevolution and macroevolution, and to inspire new empirical and methodological approaches to more adequately investigate speciation dynamics either using neontological or paleontological data.  相似文献   

16.
17.
18.
Integrating optical sensors and 3D‐printed optics into single‐use (SU) cultivation vessels for customized, tailor‐made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space‐saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels. This study examines how optical prisms can be 3D‐printed with a 3D‐inkjet printer, modified and then evaluated in a custom made optical bench. The prisms are coated or bonded with thin cover glasses. For the examination of reflectance performance and conformity prisms are compared on the basis of measured characteristics of a conventional glass prism. In addition, the most efficient and reproducible prism geometry and modification technique is applied to a customized 3D‐printed cultivation vessel. The vessel is evaluated on a commercial sensor‐platform, a shake flask reader (SFR) vario, to investigate its sensing‐characteristics while monitoring scattered light with the turbidity standard formazine and a cell suspension of Saccharomyces cerevisiae as model organism. It is demonstrated that 3D‐printed prisms can be used in combination with commercial scattered light sensor‐platforms to determine OD of a microbial culture and that a 3D‐printed unibody design with integrated optics in a cultivation vessel is feasible. In the range of OD600 0–1.16 rel.AU a linear correlation between sensor amplitude and offline determined OD can be achieved. Thus, enabling for the first time a measurement of low cell densities with the SFR vario platform. Moreover, sensitivity is also at least three times higher compared to the commonly used method.  相似文献   

19.
20.
MiR‐589‐5p could promote liver cancer, but the specific mechanisms are largely unknown. This study examined the role and mechanisms of miR‐589‐5p in liver cancer. The expressions of miR‐589‐5p, METTL3 and m6A in liver cancers were determined by RT‐qPCR. The relationship between miR‐589‐5p and METTL3‐mediated m6A methylation was examined by m6A RNA immunoprecipitation. After transfection, the viability, migration, invasion and expressions of METTL3 and miR‐589‐5p in liver cancer cells were detected by CCK‐8, wound‐healing, transwell and RT‐qPCR. After the xenograft tumour was established in mice, the tumour volume was determined and the expressions of METTL3, miR‐589‐5p, MMP‐2, TIMP‐2, E‐cadherin, N‐cadherin and Vimentin in tumour tissue were detected by RT‐qPCR and Western blotting. In vitro study showed that miR‐589‐5p and METTL3 were highly expressed in liver cancer. METTL3 was positively correlated with miR‐589‐5p. METTL3 up‐regulated the expression of miR‐589‐5p and promoted the maturation of miR‐589‐5p. Overexpressed miR‐589‐5p and METTL3 promoted the viability, migration and invasion of liver cancer cells, while the effects of silencing miR‐589‐5p and METTL3 on the cells were the opposite. The effects of METTL3 overexpression and silencing were reversed by miR‐589‐5p inhibitor and mimic, respectively. In vivo study showed that METLL3 silencing inhibited the growth of xenograft tumour and the expressions of METTL3, MMP‐2, N‐cadherin and Vimentin, promoted the expressions of TIMP‐2 and E‐cadherin, while miR‐589‐5p mimic caused the opposite results and further reversed the effects of METLL3 silencing. In summary, this study found that METTL3‐mediated maturation of miR‐589‐5p promoted the malignant development of liver cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号