首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.  相似文献   

2.
The advent of high-throughput metagenomic sequencing has prompted the development of efficient taxonomic profiling methods allowing to measure the presence, abundance and phylogeny of organisms in a wide range of environmental samples. Multivariate sequence-derived abundance data further has the potential to enable inference of ecological associations between microbial populations, but several technical issues need to be accounted for, like the compositional nature of the data, its extreme sparsity and overdispersion, as well as the frequent need to operate in under-determined regimes.The ecological network reconstruction problem is frequently cast into the paradigm of Gaussian Graphical Models (GGMs) for which efficient structure inference algorithms are available, like the graphical lasso and neighborhood selection. Unfortunately, GGMs or variants thereof can not properly account for the extremely sparse patterns occurring in real-world metagenomic taxonomic profiles. In particular, structural zeros (as opposed to sampling zeros) corresponding to true absences of biological signals fail to be properly handled by most statistical methods.We present here a zero-inflated log-normal graphical model (available at https://github.com/vincentprost/Zi-LN) specifically aimed at handling such “biological” zeros, and demonstrate significant performance gains over state-of-the-art statistical methods for the inference of microbial association networks, with most notable gains obtained when analyzing taxonomic profiles displaying sparsity levels on par with real-world metagenomic datasets.  相似文献   

3.
ChIP-seq is a powerful method for obtaining genome-wide maps of protein-DNA interactions and epigenetic modifications. CHANCE (CHip-seq ANalytics and Confidence Estimation) is a standalone package for ChIP-seq quality control and protocol optimization. Our user-friendly graphical software quickly estimates the strength and quality of immunoprecipitations, identifies biases, compares the user''s data with ENCODE''s large collection of published datasets, performs multi-sample normalization, checks against quantitative PCR-validated control regions, and produces informative graphical reports. CHANCE is available at https://github.com/songlab/chance.  相似文献   

4.
The perturbations of protein-protein interactions (PPIs) were found to be the main cause of cancer. Previous PPI prediction methods which were trained with non-disease general PPI data were not compatible to map the PPI network in cancer. Therefore, we established a novel cancer specific PPI prediction method dubbed NECARE, which was based on relational graph convolutional network (R-GCN) with knowledge-based features. It achieved the best performance with a Matthews correlation coefficient (MCC) = 0.84±0.03 and an F1 = 91±2% compared with other methods. With NECARE, we mapped the cancer interactome atlas and revealed that the perturbations of PPIs were enriched on 1362 genes, which were named cancer hub genes. Those genes were found to over-represent with mutations occurring at protein-macromolecules binding interfaces. Furthermore, over 56% of cancer treatment-related genes belonged to hub genes and they were significantly related to the prognosis of 32 types of cancers. Finally, by coimmunoprecipitation, we confirmed that the NECARE prediction method was highly reliable with a 90% accuracy. Overall, we provided the novel network-based cancer protein-protein interaction prediction method and mapped the perturbation of cancer interactome. NECARE is available at: https://github.com/JiajunQiu/NECARE.  相似文献   

5.
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in individual patients. Application to 19 TCGA cancer types revealed a mean of 11 core driver combinations per cancer, comprising 2–6 alterations per combination and accounting for a mean of 70% of samples per cancer type. CRSO is distinct from methods based on statistical co‐occurrence, which we demonstrate is a suboptimal criterion for investigating driver cooperation. CRSO identified well‐studied driver combinations that were not detected by other approaches and nominated novel combinations that correlate with clinical outcomes in multiple cancer types. Novel synergies were identified in NRAS‐mutant melanomas that may be therapeutically relevant. Core driver combinations involving NFE2L2 mutations were identified in four cancer types, supporting the therapeutic potential of NRF2 pathway inhibition. CRSO is available at https://github.com/mikekleinsgit/CRSO/.  相似文献   

6.
Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.  相似文献   

7.
Practical identifiability of Systems Biology models has received a lot of attention in recent scientific research. It addresses the crucial question for models’ predictability: how accurately can the models’ parameters be recovered from available experimental data. The methods based on profile likelihood are among the most reliable methods of practical identification. However, these methods are often computationally demanding or lead to inaccurate estimations of parameters’ confidence intervals. Development of methods, which can accurately produce parameters’ confidence intervals in reasonable computational time, is of utmost importance for Systems Biology and QSP modeling.We propose an algorithm Confidence Intervals by Constraint Optimization (CICO) based on profile likelihood, designed to speed-up confidence intervals estimation and reduce computational cost. The numerical implementation of the algorithm includes settings to control the accuracy of confidence intervals estimates. The algorithm was tested on a number of Systems Biology models, including Taxol treatment model and STAT5 Dimerization model, discussed in the current article.The CICO algorithm is implemented in a software package freely available in Julia (https://github.com/insysbio/LikelihoodProfiler.jl) and Python (https://github.com/insysbio/LikelihoodProfiler.py).  相似文献   

8.
Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker''s ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.  相似文献   

9.
The recently developed Hi-C technique has been widely applied to map genome-wide chromatin interactions. However, current methods for analyzing diploid Hi-C data cannot fully distinguish between homologous chromosomes. Consequently, the existing diploid Hi-C analyses are based on sparse and inaccurate allele-specific contact matrices, which might lead to incorrect modeling of diploid genome architecture. Here we present ASHIC, a hierarchical Bayesian framework to model allele-specific chromatin organizations in diploid genomes. We developed two models under the Bayesian framework: the Poisson-multinomial (ASHIC-PM) model and the zero-inflated Poisson-multinomial (ASHIC-ZIPM) model. The proposed ASHIC methods impute allele-specific contact maps from diploid Hi-C data and simultaneously infer allelic 3D structures. Through simulation studies, we demonstrated that ASHIC methods outperformed existing approaches, especially under low coverage and low SNP density conditions. Additionally, in the analyses of diploid Hi-C datasets in mouse and human, our ASHIC-ZIPM method produced fine-resolution diploid chromatin maps and 3D structures and provided insights into the allelic chromatin organizations and functions. To summarize, our work provides a statistically rigorous framework for investigating fine-scale allele-specific chromatin conformations. The ASHIC software is publicly available at https://github.com/wmalab/ASHIC.  相似文献   

10.
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methylation data, usually have different powers in identifying the unknown cell types through clustering. So, methods that integrate multiple datasets can potentially lead to a better clustering performance. Here we propose coupleCoC+ for the integrative analysis of single-cell genomic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-clustering framework. In coupleCoC+, we utilize the information in one dataset, the source data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the linked features in the two datasets for effective knowledge transfer, and it also uses the information of the features in the target data that are unlinked with the source data. In addition, coupleCoC+ matches similar cell types across the source data and the target data. By applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we demonstrate that coupleCoC+ improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has fast convergence and it is computationally efficient. The software is available at https://github.com/cuhklinlab/coupleCoC_plus.  相似文献   

11.
Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer. Packages implementing AQuN are provided for Python and Matlab: https://github.com/YakhiniGroup/PyAQN.  相似文献   

12.
Algorithms for active module identification (AMI) are central to analysis of omics data. Such algorithms receive a gene network and nodes'' activity scores as input and report subnetworks that show significant over‐representation of accrued activity signal (“active modules”), thus representing biological processes that presumably play key roles in the analyzed conditions. Here, we systematically evaluated six popular AMI methods on gene expression and GWAS data. We observed that GO terms enriched in modules detected on the real data were often also enriched on modules found on randomly permuted data. This indicated that AMI methods frequently report modules that are not specific to the biological context measured by the analyzed omics dataset. To tackle this bias, we designed a permutation‐based method that empirically evaluates GO terms reported by AMI methods. We used the method to fashion five novel AMI performance criteria. Last, we developed DOMINO, a novel AMI algorithm, that outperformed the other six algorithms in extensive testing on GE and GWAS data. Software is available at https://github.com/Shamir‐Lab.  相似文献   

13.
14.
Understanding the relationships between biological processes is paramount to unravel pathophysiological mechanisms. These relationships can be modeled with Transfer Functions (TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we present Iliski, a software dedicated to TFs computation between two signals. It includes different pre-treatment routines and TF computation processes: deconvolution, deterministic and non-deterministic optimization algorithms that are adapted to disparate datasets. We apply Iliski to data on neurovascular coupling, an ensemble of cellular mechanisms that link neuronal activity to local changes of blood flow, highlighting the software benefits and caveats in the computation and evaluation of TFs. We also propose a workflow that will help users to choose the best computation according to the dataset. Iliski is available under the open-source license CC BY 4.0 on GitHub (https://github.com/alike-aydin/Iliski) and can be used on the most common operating systems, either within the MATLAB environment, or as a standalone application.  相似文献   

15.
16.
MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine learning-based method of miRNA target prediction at the site and UTR levels. This method uses experimentally verified miRNA targets from miRecords and mirTarBase as training sets and considers over 700 features. By combining Correlation-based Feature Selection with a variety of statistical or machine learning methods for the site- and UTR-level classifiers, mirMark significantly improves the overall predictive performance compared to existing publicly available methods. MirMark is available from https://github.com/lanagarmire/MirMark.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0500-5) contains supplementary material, which is available to authorized users.  相似文献   

17.
Combined analysis of multiple, large datasets is a common objective in the health- and biosciences. Existing methods tend to require researchers to physically bring data together in one place or follow an analysis plan and share results. Developed over the last 10 years, the DataSHIELD platform is a collection of R packages that reduce the challenges of these methods. These include ethico-legal constraints which limit researchers’ ability to physically bring data together and the analytical inflexibility associated with conventional approaches to sharing results. The key feature of DataSHIELD is that data from research studies stay on a server at each of the institutions that are responsible for the data. Each institution has control over who can access their data. The platform allows an analyst to pass commands to each server and the analyst receives results that do not disclose the individual-level data of any study participants. DataSHIELD uses Opal which is a data integration system used by epidemiological studies and developed by the OBiBa open source project in the domain of bioinformatics. However, until now the analysis of big data with DataSHIELD has been limited by the storage formats available in Opal and the analysis capabilities available in the DataSHIELD R packages. We present a new architecture (“resources”) for DataSHIELD and Opal to allow large, complex datasets to be used at their original location, in their original format and with external computing facilities. We provide some real big data analysis examples in genomics and geospatial projects. For genomic data analyses, we also illustrate how to extend the resources concept to address specific big data infrastructures such as GA4GH or EGA, and make use of shell commands. Our new infrastructure will help researchers to perform data analyses in a privacy-protected way from existing data sharing initiatives or projects. To help researchers use this framework, we describe selected packages and present an online book (https://isglobal-brge.github.io/resource_bookdown).  相似文献   

18.
Random Forest has become a standard data analysis tool in computational biology. However, extensions to existing implementations are often necessary to handle the complexity of biological datasets and their associated research questions. The growing size of these datasets requires high performance implementations. We describe CloudForest, a Random Forest package written in Go, which is particularly well suited for large, heterogeneous, genetic and biomedical datasets. CloudForest includes several extensions, such as dealing with unbalanced classes and missing values. Its flexible design enables users to easily implement additional extensions. CloudForest achieves fast running times by effective use of the CPU cache, optimizing for different classes of features and efficiently multi-threading. https://github.com/ilyalab/CloudForest.  相似文献   

19.
20.
Transposons are genomic parasites, and their new insertions can cause instability and spur the evolution of their host genomes. Rapid accumulation of short-read whole-genome sequencing data provides a great opportunity for studying new transposon insertions and their impacts on the host genome. Although many algorithms are available for detecting transposon insertions, the task remains challenging and existing tools are not designed for identifying de novo insertions. Here, we present a new benchmark fly dataset based on PacBio long-read sequencing and a new method TEMP2 for detecting germline insertions and measuring de novo ‘singleton’ insertion frequencies in eukaryotic genomes. TEMP2 achieves high sensitivity and precision for detecting germline insertions when compared with existing tools using both simulated data in fly and experimental data in fly and human. Furthermore, TEMP2 can accurately assess the frequencies of de novo transposon insertions even with high levels of chimeric reads in simulated datasets; such chimeric reads often occur during the construction of short-read sequencing libraries. By applying TEMP2 to published data on hybrid dysgenic flies inflicted by de-repressed P-elements, we confirmed the continuous new insertions of P-elements in dysgenic offspring before they regain piRNAs for P-element repression. TEMP2 is freely available at Github: https://github.com/weng-lab/TEMP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号