首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Across much of North America, populations of moose (Alces alces) are declining because of disease, predation, climate change, and anthropogenic-driven habitat loss. Contrary to this trend, populations of moose in Colorado, USA, have continued to grow. Studying successful (i.e., persistent or growing) populations of moose can facilitate continued conservation by identifying habitat features critical to persistence of moose. We hypothesized that moose using habitat with higher quality willow (Salix spp.) would have a higher probability of having a calf-at-heel (i.e., calving success). We evaluated moose calving success using repeated ground observations of collared individuals with calves in an occupancy model framework to account for detection probability. We then evaluated the impact of willow habitat quality and nutrition on moose calving success by studying 2 spatially segregated populations of moose in Colorado. Last, we evaluated correlations between willow characteristics (browse intensity, height, cover, leaf length, and species) and willow nutrition (dry matter digestibility [DMD]) to assess the utility of using those characteristics to assess willow nutrition. We found willow height and cover had a high probability of being positively associated with higher individual-level calving success. Willow DMD, browse intensity, and leaf length were not predictive of individual moose calving success; however, the site with higher mean DMD consistently had higher mean estimates of calving success for the same year. Our results suggest surveying DMD is likely not a useful metric for assessing differences in calving success of individual moose but may be of use at population levels. Further, the assessment of willow morphology and density may be used to identify areas that support higher levels of moose calving success.  相似文献   

2.
  1. Predicting the likelihood of wildlife presence at potential wildlife–livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High‐resolution data can help identify fine‐scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human–wildlife conflict.
  2. This study uses fine‐scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi‐likelihood were used to identify habitat‐based and anthropogenic predictors of wild boar signs.
  3. Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest‐type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest‐type habitats and near recreational parks and less likely to be seen near livestock.
  4. This approach shows that wild boar habitat use can be predicted using fine‐scale data over comparatively small areas and in human‐dominated landscapes, while taking account of the spatial correlation from other nearby fine‐scale data‐points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement‐restricted, isolated, or fragmented wildlife populations.
  相似文献   

3.
Since 2010, several moose (Alces alces) populations have declined across North America. These declines are believed to be broadly related to climate and landscape change. At the western reaches of moose continental range, in the interior of British Columbia, Canada, wildlife managers have reported widespread declines of moose populations. Disturbances to forests from a mountain pine beetle (Dendroctonum ponderosae) outbreak and associated salvage logging infrastructure in British Columbia are suspected as a mechanism manifested in moose behavior and habitat selection. We examined seasonal differences in moose habitat selection in response to landscape change from mountain pine beetle salvage logging infrastructure: dense road networks and large intensive forest harvest cutblocks. We used 157,447 global positioning system locations from 83 adult female moose from 2012 to 2016 on the Bonaparte Plateau at the southern edge of the Interior Plateau of central British Columbia to test whether increased forage availability, landscape features associated with increased mortality risk, or the cumulative effects of salvage logging best explain female moose distribution using resource selection functions in an information-theoretic framework. We tested these hypotheses across biological seasons, defined using a cluster analysis framework. The cumulative effects of forage availability and risk best predicted resource selection of female moose in all seasons; however, the covariates included in the cumulative models varied between seasons. The top forage availability model better explained moose habitat use than the top risk model in all seasons, except for the calving and fall seasons where the top risk model (distance to road) better predicted moose space use. Selection of habitat that provides forage in winter, spring, and summer suggests that moose seasonally trade predation risk for the benefits of foraging in early seral vegetation communities in highly disturbed landscapes. Our results identified the need for intensive landscape-scale management to stem moose population declines. Additional research is needed on predator densities, space use, and calf survival in relation to salvage logging infrastructure. © 2020 The Wildlife Society.  相似文献   

4.
High human‐caused mortality due to wildlife‐vehicle‐collisions and illegal killing leads to frequent cases of orphaned Eurasian lynx juveniles. Under natural conditions, this would result in starvation of the young. To avoid this, wildlife managers conventionally rear animals in captivity and release them later. However, this measure is an undesirable outcome for species conservation, managers, and animals alike. Increased awareness of Eurasian lynx orphaned by human‐caused mortality means managers must often intervene in endangered populations. In this study, we report for the first time a successful case of in situ feeding designed to avoid captivity of two orphaned Eurasian lynx. We exposed 13 roe deer and 7 red deer carcasses in the field to successfully support two orphans to the age of independence and confirm dispersal from the natal range. We present this management approach as a feasible and complimentary tool that can be considered in small or isolated large carnivore populations where every individual counts toward population viability.  相似文献   

5.
ABSTRACT Wildlife-vehicle collisions cause numerous human fatalities and injuries, and generate considerable expenses in property damage each year. Certain characteristics of the road and its surroundings are known to have an impact on collision probability. Roadside salt pools increase the risk of collision by attracting moose (Alces alces) to the side of the road. In the Laurentides Wildlife Reserve of Québec, Canada, roadside salt pools were drained and filled with rocks to deter moose from drinking. We surveyed 12 roadside salt pools during 3 consecutive summers (2003–2005) from mid-May to mid-August. Seven salt pools were managed in autumn 2004, and 5 pools were left untreated. We equipped all 12 sites with electronic apparatus that allowed us to detect moose attendance and study their behavior. We also measured physical, chemical, and environmental characteristics of these pools and other unvisited pools in order to correlate moose attendance with specific habitat criteria. We found that moose mostly attended roadside salt pools from mid-June to mid-July, with a decrease in August. Moose attendance was significantly correlated with visual obstruction toward the road and water availability. Management of the pools caused a decrease in mean length of time moose spent at them. Number of visits decreased significantly at night (by 90%), which was when most visits occurred, but not during the day. The proposed management practice prevented all visiting moose from drinking brackish water. These results suggest that moose should eventually lose interest in treated salt pools, therefore decreasing the risk of moose-vehicle collisions on the road.  相似文献   

6.
At northern latitudes, large spatial and temporal variation in the nutritional composition of available foods poses challenges to wild herbivores trying to satisfy their nutrient requirements. Studies conducted in mostly captive settings have shown that animals from a variety of taxonomic groups deal with this challenge by adjusting the amounts and proportions of available food combinations to achieve a target nutrient balance. In this study, we used proportions‐based nutritional geometry to analyze the nutritional composition of rumen samples collected in winter from 481 moose (Alces alces) in southern Sweden and examine whether free‐ranging moose show comparable patterns of nutrient balancing. Our main hypothesis was that wild moose actively regulate their rumen nutrient composition to offset ecologically imposed variation in the nutritional composition of available foods. To test this, we assessed the macronutritional composition (protein, carbohydrates, and lipids) of rumen contents and commonly eaten foods, including supplementary feed, across populations with contrasting winter diets, spanning an area of approximately 10,000 km2. Our results suggest that moose balanced the macronutrient composition of their rumen, with the rumen contents having consistently similar proportional relationship between protein and nonstructural carbohydrates, despite differences in available (and eaten) foods. Furthermore, we found that rumen macronutrient balance was tightly related to ingested levels of dietary fiber (cellulose and hemicellulose), such that the greater the fiber content, the less protein was present in the rumen compared with nonstructural carbohydrates. Our results also suggest that moose benefit from access to a greater variety of trees, shrubs, herbs, and grasses, which provides them with a larger nutritional space to maneuver within. Our findings provide novel theoretical insights into a model species for ungulate nutritional ecology, while also generating data of direct relevance to wildlife and forest management, such as silvicultural or supplementary feeding practices.  相似文献   

7.
Logging in the boreal forest may benefit moose by increasing food availability. However, the influence of tree plantations on moose behavior, especially on moose spatial ecology, is poorly understood. We assessed the impacts of black spruce plantations on moose winter distribution at a landscape scale in the Bas-Saint-Laurent region (Québec, Canada). We used winter aerial surveys to examine relationships among plantation characteristics and other habitat variables known to affect moose distribution. The total area of plantations positively influenced moose abundance, but highly aggregated plantations resulted in fewer moose. Moose abundance was also positively associated with food availability and the density of edges between stands providing cover and stands offering high food availability, but moose abundance was negatively associated with road density. Although plantation characteristics were less influential than habitat variables related to foraging and predator avoidance, we demonstrate that the area of black spruce plantations and their configuration should be considered in moose management. We conclude that an integrated management strategy is needed to find a balance between overdeveloped road networks (needed to join homogeneously distributed plantations) and agglomerated plantations in order to mitigate impacts on moose winter distribution. © 2012 The Wildlife Society.  相似文献   

8.

Aim

Several large-mammal species in Europe have recovered and recolonized parts of their historical ranges. Knowing where suitable habitat exists, and thus where range expansions are possible, is important for proactively promoting coexistence between people and large mammals in shared landscapes. We aimed to assess the opportunities and limitations for range expansions of Europe's two largest herbivores, the European bison (Bison bonasus) and moose (Alces alces).

Location

Central Europe.

Methods

We used large occurrence datasets from multiple populations and species distribution models to map environmentally suitable habitats for European bison and moose across Central Europe, and to assess human pressure inside the potential habitat. We then used circuit theory modeling to identify potential recolonization corridors.

Results

We found widespread suitable habitats for both European bison (>120,000 km2) and moose (>244,000 km2), suggesting substantial potential for range expansions. However, much habitat was associated with high human pressure (37% and 43% for European bison and moose, respectively), particularly in the west of Central Europe. We identified a strong east–west gradient of decreasing connectivity, with major barriers likely limiting natural recolonization in many areas.

Main conclusions

We identify major potential for restoring large herbivores and their functional roles in Europe's landscapes. However, we also highlight considerable challenges for conservation planning and wildlife management, including areas where recolonization likely leads to human–wildlife conflict and where barriers to movement prevent natural range expansion. Conservation measures restoring broad-scale connectivity are needed in order to allow European bison and moose to recolonize their historical ranges. Finally, our analyses and maps indicate suitable but isolated habitat patches that are unlikely to be colonized but are candidate locations for reintroductions to establish reservoir populations. More generally, our work emphasizes that transboundary cooperation is needed for restoring large herbivores and their ecological roles, and to foster coexistence with people in Europe's landscapes.  相似文献   

9.
The western massasauga (Sistrurus tergeminus) is a small pit viper with an extensive geographic range, yet observations of this species are relatively rare. They persist in patchy and isolated populations, threatened by habitat destruction and fragmentation, mortality from vehicle collisions, and deliberate extermination. Changing climates may pose an additional stressor on the survival of isolated populations. Here, we evaluate historic, modern, and future geographic projections of suitable climate for S. tergeminus to outline shifts in their potential geographic distribution and inform current and future management. We used maximum entropy modeling to build multiple models of the potential geographic distribution of S. tergeminus. We evaluated the influence of five key decisions made during the modeling process on the resulting geographic projections of the potential distribution, allowing us to identify areas of model robustness and uncertainty. We evaluated models with the area under the receiver operating curve and true skill statistic. We retained 16 models to project both in the past and future multiple general circulation models. At the last glacial maximum, the potential geographic distribution associated with S. tergeminus occurrences had a stronghold in the southern part of its current range and extended further south into Mexico, but by the mid‐Holocene, its modeled potential distribution was similar to its present‐day potential distribution. Under future model projections, the potential distribution of S. tergeminus moves north, with the strongest northward trends predicted under a climate scenario increase of 8.5 W/m2. Some southern populations of S. tergeminus have likely already been extirpated and will continue to be threatened by shifting availability of suitable climate, as they are already under threat from desertification of grasslands. Land use and habitat loss at the northern edge of the species range are likely to make it challenging for this species to track suitable climates northward over time.  相似文献   

10.
Monitoring large herbivores across their core range has been readily accomplished using aerial surveys and traditional distance sampling. But for peripheral populations, where individuals may occur in patchy, low-density populations, precise estimation of population size and trend remains logistically and statistically challenging. For moose (Alces alces) along their southern range margin in northern New York, USA, we sought robust estimates of moose distribution, abundance, and population trend (2016–2019) using a combination of aerial surveys (line transect distance-sampling), repeated surveys in areas where moose were known to occur to boost the number of detections, and density surface modeling (DSM) with spatial covariates. We achieved a precise estimate of density (95% CI = 0.00–0.29 moose/km2) for this small population (656 moose, 95% CI = 501–859), which was patchily distributed across a large and heavily forested region (the 24,280-km2 Adirondack Park). Local moose abundance was positively related to active timber management, elevation, and snow cover, and negatively related to large bodies of water. As expected, moose abundance in this peripheral population was low relative to its core range in other northern forest states. Yet, in areas where abundance was greatest, moose densities in New York approached those where epizootics of winter tick (Dermacentor albipictus) have been reported, underscoring the need for effective and efficient monitoring. By incorporating autocorrelation in observations and landscape covariates, DSM provided spatially explicit estimates of moose density with greater precision and no additional field effort over traditional distance sampling. Combined with repeated surveys of areas with known moose occurrence to achieve viable sample sizes, DSM is a useful tool for effectively monitoring low density and patchy populations.  相似文献   

11.
小兴安岭黑河胜山林区冬季驼鹿的生境选择   总被引:2,自引:2,他引:0  
2002年、2003年和2004年的12月至3月,在小兴安岭黑河胜山林场开展了驼鹿生境选择的研究。研究中选择了9类与驼鹿生境选择相关的生态因子:植被型、离公路距离、离采伐点距离、平均雪深、隐蔽程度、坡向、坡位、坡度、海拔,运用SPSS软件进行交叉汇总定量分析。结果表明,胜山驼鹿冬季以落叶阔叶林、灌丛为主要生境,影响驼鹿分布的主要生态因子为隐蔽程度、坡位,其次为雪深、坡向、离采伐点距离、离公路距离,坡度、海拔对驼鹿分布的影响不明显。  相似文献   

12.
ABSTRACT We developed and validated a density-adjusted spatial model to predict moose (Alces alces) highway-crossing probability to see if the model could be used as an index of moose-vehicle collision risk. We installed Global Positioning System telemetry collars on 47 moose in the north of the Laurentides Wildlife Reserve, Québec, for 2–36 months. We recorded only 84 highway crossings in spring (0.29% of 28,967 2-hr steps) and 122 crossings in summer (0.18% of 68,337 2-hr steps), despite a high sampling effort and having captured moose close to highways. Moose movement rates during movement steps crossing a highway were on average 3 times higher than during the steps preceding or following highway crossing. Paths used by moose when crossing a highway were characterized by a high proportion of food stands, low proportion of lakes and rivers, and topography typical of a valley. Highway-crossing sites were located in valleys with brackish pools and forest stands providing coniferous cover but a low proportion of lakes and rivers. We adjusted moose crossing probability for local variation in moose density using aerial survey data and assessed crossing probability along the highways in the entire Laurentides Wildlife Reserve. We tested the model using moose-vehicle accident data from 1990 to 2002. The relationship between the density-adjusted crossing probability and number of accidents was relatively loose at the 1-km scale but improved markedly when using longer highway sections (5–15 km; r > 0.80). Our results demonstrate that roads and their surroundings are perceived as low-quality habitat by moose. We also conclude that road segments installed along secondary valleys could be a highly strategic site to deploy mitigation measures such as fences and that it could be desirable to increase the width of road shoulders to reduce forest cover and to eliminate brackish pools to reduce cervid-vehicle collisions. We suggest using empirical data such as location of vehicle-wildlife collisions to plan mitigation measures at a fine scale.  相似文献   

13.
Ranges of species are dynamic and respond to long‐term climate change and contemporary effects such as habitat modification. We report here that moose (Alces alces) have recently colonized coastal temperate rainforests of British Columbia, Canada. Contrary to recent publications, field observations of moose and their sign, combined with their occurrence in wolf (Canis lupus) faeces, suggest that moose are now widespread on the coastal mainland and occur on least three islands. Traditional ecological knowledge (information accumulated by aboriginal peoples about their environment) suggests that colonization occurred during the mid 1900s, concomitant with logging of major watersheds that bisect the Coast Mountain Range. Range expansion by moose may have ecological consequences such as alteration of predator–prey dynamics and transmission of disease to native deer (Odocoileus hemionus).  相似文献   

14.
Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio‐marked sage‐grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long‐term recovery.  相似文献   

15.
Summer diet, summer temperature, length of the growth season and animal density appeared to best explain annual and regional differences in calf and yearling body mass in moose from southeastern Norway. In general animals inhabiting steep, alpine landscapes had less body mass than animals using flat, low-altitude habitats. Autumn body mass of calves and yearlings decreased with increasing snow depth during the preceding winter and spring. However, calf body mass was more influenced by the summer range and less by the winter range than was body mass of yearlings. There was no indication that the effect of snow depth on autumn body mass was greater in moose living on poor than on good summer ranges. Body mass decreased with increasing competition for summer forage, while the winter range mainly had an density-independent effect. Habitat quality, expressed as regression lines between calf and yearling body mass and animal density (hunting yield), differed between regions. On ranges of medium and high altitude where birch (Betula spp.) rowan (Sorbus aucuparia) and bilberry (Vaccinium myrtillus) dominated moose summer diet, body mass decreased at a rapid rate with increasing animal density. Body mass decreased at a slower rate at low-altitude ranges and at high-altitude ranges where willow (Salix spp.) and forbs dominated the diet. Body mass of lactating cows decreased with increasing animal density, but animal density did not affect body mass of non-lactating cows. There was no indication that the decrease in autumn body mass with increasing moose density over the last 25 years has caused a decrease in animal condition (ability to survive the winter). The results are discussed in relation to the effect of summer and winter range on population regulation in moose. It is concluded that a density-dependent effect is apparent on the summer range even at low and intermediate population densities. On the winter range, on the other hand, density-dependence is likely to occur only at high levels of population density. Received: 4 February 1997 / Accepted: 1 February 1999  相似文献   

16.
As a result of extensive data collection efforts over the last 20–30 years, there is quite a good understanding of the large‐scale geographic distribution and range limits of African great apes. However, as human activities increasingly fragment great ape spatial distribution, a better understanding of what constitutes suitable great ape habitat is needed to inform conservation and resource extraction management. Chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) inhabit the Lobéké National Park and its surrounding forest management units (FMUs) in South‐East Cameroon. Both park and neighboring forestry concessions require reliable evidence on key factors driving great ape distribution for their management plans, yet this information is largely missing and incomplete. This study aimed at mapping great ape habitat suitability in the area and at identifying the most influential predictors among three predictor categories, including landscape predictors (dense forest, swampy forest, distance to water bodies, and topography), human disturbance predictors (hunting, deforestation, distance to roads, and population density), and bioclimatic predictor (annual precipitation). We found that about 63% of highly to moderately suitable chimpanzee habitat occurred within the Lobéké National Park, while only 8.4% of similar habitat conditions occurred within FMUs. For gorillas, highly and moderately suitable habitats occurred within the Lobéké National Park and its surrounding FMUs (82.6% and 65.5%, respectively). Key determinants of suitable chimpanzee habitat were hunting pressure and dense forest, with species occurrence probability optimal at relatively lower hunting rates and at relatively high‐dense forest areas. Key determinants of suitable gorilla habitat were hunting pressure, dense forests, swampy forests, and slope, with species occurrence probability optimal at relatively high‐dense and swampy forest areas and at areas with mild slopes. Our findings show differential response of the two ape species to forestry activities in the study area, thus aligning with previous studies.  相似文献   

17.
Moose (Alces americanus ) vehicle collisions (MVCs) are an issue throughout the distribution of moose. Many mitigation strategies have been tested and implemented to reduce the number of MVCs, but there have been few empirical analyses of the effectiveness of roadside vegetation cutting. The goal of this study was to determine if roadside vegetation cutting attracted moose into roadside areas to browse on the vegetation regrowth. We hypothesized that moose would be attracted to roadside areas with cut vegetation. Consequently, we predicted that there would be higher levels of browsing in cut areas compared to uncut areas. To determine if moose were browsing more in cut or uncut areas, we measured the number of plants browsed by moose in paired treatment (cut on or after 2008) and control (not cut since at least 2008) sites, along with a suite of potential environmental covariates. Using a model selection approach, we fit generalized linear mixed-effects models to determine the most parsimonious set of environmental variables to explain variation in the proportion of moose browse among sites. In contrast to our hypothesis, our results show that the proportion of moose browse in the uncut control areas was significantly higher than in the cut treatment areas. The results of this study suggest that recently cut roadside areas (7 years or less based on our work) may create a less attractive foraging habitat for moose. The majority of the variance in the proportion of moose browse among sites was explained by treatment type and nested plot number within site identification (34.16%), with additional variance explained by traffic region (5.00%) and moose density (4.35%). Based on our study, we recommend that vegetation cutting be continued in roadside areas in Newfoundland as recently cut areas may be less attractive browsing sites for moose.  相似文献   

18.
Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio‐temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage‐grouse (Centrocercus urophasianus; sage‐grouse) at the range‐wide scale. Finer‐scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage‐grouse in the United States. We quantified seasonal second‐order habitat selection for sage‐grouse across the state of Utah to produce spatio‐temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage‐grouse marked with very‐high‐frequency radio‐transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage‐grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range‐wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range‐wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range‐wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide‐ranging species.  相似文献   

19.
Human disturbance directly affects animal populations and communities, but indirect effects of disturbance on species behaviors are less well understood. For instance, disturbance may alter predator activity and cause knock‐on effects to predator‐sensitive foraging in prey. Camera traps provide an emerging opportunity to investigate such disturbance‐mediated impacts to animal behaviors across multiple scales. We used camera trap data to test predictions about predator‐sensitive behavior in three ungulate species (caribou Rangifer tarandus; white‐tailed deer, Odocoileus virginianus; moose, Alces alces) across two western boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to inferred human‐mediated predation risk between a landscape with greater industrial disturbance and predator activity and a “control” landscape with lower human and predator activity. We also assessed the finer‐scale influence on behavior of variation in predation risk (relative to habitat variation) across camera sites within the more disturbed landscape. We predicted that animals in areas with greater predation risk (e.g., more wolf activity, less cover) would travel faster past cameras and generate fewer photos per detection event, while animals in areas with less predation risk would linger (rest, forage, investigate), generating more photos per event. Our predictions were supported at the landscape‐level, as caribou and moose had more photos per event in the control landscape where disturbance‐mediated predation risk was lower. At a finer‐scale within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white‐tailed deer with increasing line of sight (m) along seismic lines (i.e., decreasing visual cover), consistent with a predator‐sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive behavioral association (i.e., longer events) with vegetation productivity (16‐day NDVI), suggesting that for other species bottom‐up influences of forage availability were generally weaker than top‐down influences from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide complementary information about animal responses to predation risk, and thus about the indirect impacts of human disturbances on predator–prey interactions.  相似文献   

20.
Selective foraging by large mammals can change ecosystem properties such as plant species composition, nutrient cycling rates, and soil fertility. These changes, in turn, alter the availability of forage and could affect the relative efficiencies of foraging strategies used by these animals. We used a simulation model to predict how alternate foraging strategies affected the net annual energy balance of moose (Alces alces), moose density, and distribution of browse across the landscape. The model simulates the spatial distribution of vegetation in an 8-ha landscape of 1-m2 cells with seasonal changes in the energetic needs of free-ranging moose and plant phenology. The energetics model was integrated with a moose population model and a plant-growth model for long-term simulations. Changes in bite density in each feeding station are predicted with height and biomass logistic curves modified by a quadratic response to browsing. We tested foraging strategies using random, fractional, and marginal value theorem (MVT) algorithms on landscapes with a range of bite densities and differing spatial distributions. Small-scale disturbances (that is, tree-fall gaps) were required to maintain browse supply and prevent moose population extinction under all foraging strategies. Populations using a fractional stopping rule survived the 100-year simulations because moose browsed across much of the landscape and did not overbrowse patches with high bite density. Populations using random and MVT stopping rules became extinct in about 25 and about 50 years, respectively. Moose using a random stopping rule were in negative energy balance because travel time was high and the net energy intake rate was low on an annual basis. Moose using the MVT stopping rule were initially in positive energy balance, but as the high-density browse patches were overbrowsed and low-density unbrowsed patches grew out of reach, bite density decreased, and energy balance became negative in subsequent years. Thus, the foraging strategy used by individual moose resulted in creation of landscapes that strongly affected browse density, browse distribution, moose population density, and moose survival. Received 30 April 1997; accepted 5 August 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号