首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Mutational inactivation of the retinoblastoma (RB) gene is considered a fundamental event in the formation of several types of human cancer. A substantial proportion of RB gene mutations are partial or complete deletions that extend an unknown distance beyond one or both ends of the gene. To provide a framework for measuring the extent of these deletions, we have constructed a long-range restriction map of SfiI sites spanning 850 kilobases around the RB gene. This map was applied in a molecular analysis of RB gene deletion in breast cancer cell line MB468. A previous study of this cell line demonstrated deletion of the entire RB gene except for exons 1 and 2 (E. Y.-H. P. Lee, H. To, J.-Y. Shew, R. Bookstein, P. Scully, and W.-H. Lee, Science 241:218-221, 1988). Genomic clones containing the deletion junction were isolated from a library made from MB468 DNA. A probe obtained from the far side of the deletion junction was used to localize and clone the unknown 3' endpoint, demonstrating that the chromosomal mutation in this case was a simple deletion spanning 200 kilobases. Sequence analysis of the deletion junction indicated a conservative deletion with no loss or gain of nucleotides. The deletion endpoints had no sequence homology to each other or to any repetitive sequence family, such as Alu, so the recombination event was illegitimate. Structural analysis of this and other RB gene deletions is important for understanding molecular mechanisms of recessive oncogenesis.  相似文献   

3.
4.
S Chen  E Paucha 《Journal of virology》1990,64(7):3350-3357
A series of replication-competent simian virus 40 (SV40) large T antigens with point and deletion mutations in the amino acid sequence between residues 105 and 115 were examined for the ability to immortalize primary cultures of mouse and rat cells. The results show that certain mutants, including one that deletes the entire region, are able to immortalize. However, consistent with previous data, the immortalized cells are not fully transformed, as judged by doubling time, sensitivity to concentrations of serum, and anchorage-independent growth. The region from 106 to 114 has structural features in common with a region involved in transformation by adenovirus E1a protein (J. Figge, T. Webster, T.F. Smith, and E. Paucha, J. Virol. 62:1814-1818, 1988) and influences the binding of the retinoblastoma gene product to large T (J.A. DeCaprio, J.W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D.M. Livingston, Cell 54:275-283, 1988). Together, these results imply that the sequence from 106 to 114 forms part of a domain that is essential for transformation of established cells, is dispensable for immortalization, and is not required for SV40 replication. The results also indicate that the ability of SV40 large T to immortalize primary cells is independent of its ability to bind to the retinoblastoma gene product.  相似文献   

5.
6.
The mechanism of induction of DNA synthesis in quiescent rat 3Y1 cells by the adenovirus E1A gene was investigated using the 3Y1 derivative cell lines g12-21, gn12RB1, and gn12RB2. The g12-21 cells express the E1A 12S cDNA and the latter two cells express both the E1A 12S cDNA and the human retinoblastoma susceptibility (Rb) gene at different levels in response to dexamethasone (dex). The cDNA sequences of E1A-inducible cell cycle-dependent genes, clone 3 and clone 16, were isolated by differential screening of a cDNA library constructed from dex-treated g12-21 cells. The quiescent 3Y1 cells induced c-fos and c-myc expression within 2 h after serum stimulation and expressed clone 16 and clone 3 transiently at around 8 h before the onset of DNA synthesis (10 h). In contrast, the quiescent g12-21 cells treated with dex expressed a high level of E1A at 6 to 8 h after treatment and expressed clone 16 and clone 3 at around 8 h without stimulation of c-fos and c-myc expression, suggesting that E1A bypasses the cell cycle early in G1. The half-maximal rate of DNA synthesis was reached in a much shorter time in dex-treated g12-21 cells (12 h) than in serum-treated 3Y1 cells (18 h), suggesting that E1A also bypasses the cell cycle at the G1/S boundary. The gn12RB1 and gn12RB2 cells were unable to induce DNA synthesis in response to dex presumably due to lower levels of E1A expression, although gn12RB2 but not gn12RB1 cells could express clone 16 and clone 3. These results suggest that the level of E1A required for bypass at the G1/S boundary is higher than that required early in G1.  相似文献   

7.
8.
9.
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.  相似文献   

10.
DNA replication intermediates of three plasmids containing all or part of a modified Epstein-Barr virus cis-acting plasmid maintenance region (oriP) were examined to further investigate oriP function. Replication intermediates were analyzed in vivo and in vitro by neutral-neutral two-dimensional gel electrophoresis. The major functional components of the wild-type oriP are a 140-bp dyad symmetry region (single dyad) and 20 tandem copies of a repeat with a 30-bp consensus sequence (family of repeats). A modified oriP was constructed by replacing the family of repeats with three tandem copies of the single dyad (D. A. Wysokenski and J. L. Yates, J. Virol. 63:2657-2666, 1989). Initiation was observed in vivo near the single dyad in the modified oriP, as seen in the wild-type oriP (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), but was not observed near the tandem dyads. A replication barrier and termination were observed near the tandem dyads and were similar to those observed at the family of repeats of the wild-type oriP (Gahn and Schildkraut, Cell 58:527-535, 1989). In vitro experiments indicate that the viral trans-acting factor EBNA-1 contributes to efficient barrier formation at the tandem dyads as observed in the family of repeats of the wild-type oriP (V. Dhar and C. L. Schildkraut, Mol. Cell. Biol. 11:6268-6278, 1991). The tandem dyads thus appear to function in a manner similar to the family of repeats. There are significant structural differences between the family of repeats and tandem dyads. The relationship between the number and relative positions of EBNA-1 binding sites in relation to the functions of the family of repeats and the dyad symmetry element is discussed.  相似文献   

11.
Previous reports (P. D. Katsanakis, C. E. Sekaris, and D. A. Spandidos, Anticancer Res. 11:381-383, 1991; J. Laurence, M. B. Sellers, and S. K. Sikder, Blood 74:291-297, 1989; R. Miksicek, A. Heber, W. Schmid, U. Danesch, G. Posseckert, M. Beato, and G. Schutz, Cell 46:283-290, 1986) have suggested the existence of a glucocorticoid response element in the long terminal repeat of human immunodeficiency virus (HIV) type 1. This study demonstrated a sequence-specific interaction of the glucocorticoid receptor DNA-binding domain with the previously predicted HIV glucocorticoid response element. This interaction may be relevant to the steroid responsiveness of HIV (P. A. Furth, H. Westphal, and L. Hennighausen, AIDS Res. Hum. Retroviruses 6:553-560, 1990; J. Laurence, M. B. Sellers, and S. K. Sikder, Blood 74:291-297, 1989; J. Laurence, H. Cooke, and S. K. Sikder, Blood 75:696-703, 1990; D. A. Spandidos, V. Zoounpovilis, A. Kotsinas, C. Tsiripotis, and C. E. Sekeris, Anticancer Res. 10:1241-1246, 1990).  相似文献   

12.
13.
14.
15.
The retinoblastoma (RB) family consists of three genes, RB1, RBL1, and RBL2, that code for the pRb, p107, and pRb2/p130 proteins, respectively. All these factors have pivotal roles in controlling fundamental cellular mechanisms such as cell cycle, differentiation and apoptosis. The founder and the most investigated RB family protein is pRb, which is considered to be the paradigm of tumor suppressors. However, p107 and pRb2/p130 clearly display a high degree of structural and functional homology with pRb. Interestingly, these factors were first identified as physical targets of the Adenovirus E1A oncoprotein. Indeed, RB family proteins are the most important and widely investigated targets of small DNA virus oncoproteins, such as Adenovirus E1A, human papillomavirus E7 and Simian virus 40 large T antigen. By interacting with pRb and with other RB family members, these oncoproteins neutralize their growth suppressive properties, thus stimulating proliferation of the infected cells, de‐differentiation, and resistance to apoptosis. All these acquired features strongly favor the rise and selection of immortalized and mutation‐prone cells, leading to a higher propensity in undergoing transformation. Our present work aims to illustrate and delve into these protein–protein interactions. Considering that these viral oncoproteins are dispensable for normal cellular functions, they can create “oncogene addiction” in the infected/transformed cells. This makes the possibility to dismantle these interactions extremely attractive, thus promoting the development of highly specific smart molecules capable of targeting only the infected/transformed cells that express these viral factors. J. Cell. Physiol. 228: 285–291, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
《The Journal of cell biology》1993,123(6):1821-1833
Bud emergence, spindle pole body duplication and DNA replication are all dependent on the activation of the CDC28 protein kinase at the Start point in the G1 phase of the cell cycle. Bud emergence requires polarization of the cytoskeleton and secretory vesicles to a specific site on the cell surface. Cdc28p activated by G1-cyclins triggers polarization of actin to the site of bud emergence and favors apical bud growth (Lew, D. J., and S. I. Reed. 1993. J. Cell Biol. 120:1305- 1320). We isolated slt2-1 as a mutation that enhances the division defect of cdc28 mutants with defects at Start. Slt2p(Mpk1p) is a member of the MAP kinase family (Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsumoto, and D. E. Levin. 1993. Mol. Cell. Biol. 13:3067-3075). We show that slt2 mutants exhibit phenotypes similar to those shown by mutants of the yeast actin cytoskeleton, including delocalization of chitin deposition and of actin cortical spots and the accumulation of secretory pathway membranes and vesicles. Furthermore, slt2::HIS3 act1-1 and slt2::HIS3 myo2-66 double mutants are inviable. We suggest that Slt2p functions downstream or in parallel with Cdc28p in promoting bud formation and apical growth.  相似文献   

19.
Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号