共查询到20条相似文献,搜索用时 13 毫秒
1.
Quinn TA Berberian G Cabreriza SE Maskin LJ Weinberg AD Holmes JW Spotnitz HM 《American journal of physiology. Heart and circulatory physiology》2006,291(5):H2380-H2387
Temporary sequential biventricular pacing (BiVP) is a promising treatment for postoperative cardiac dysfunction, but the mechanism for improvement in right ventricular (RV) dysfunction is not understood. In the present study, cardiac output (CO) was optimized by sequential BiVP in six anesthetized, open-chest pigs during control and acute RV pressure overload (RVPO). Ventricular contractility was assessed by the maximum rate of increase of ventricular pressure (dP/dt(max)). Mechanical interventricular synchrony was measured by the area of the normalized RV-left ventricular (LV) pressure diagram (A(PP)). Positive A(PP) indicates RV pressure preceding LV pressure, whereas zero indicates complete synchrony. In the control state, CO was maximized with nearly simultaneous stimulation of the RV and LV, which increased RV (P = 0.006) and LV dP/dt(max) (P = 0.002). During RVPO, CO was maximized with RV-first pacing, which increased RV dP/dt(max) (P = 0.007), but did not affect LV dP/dt(max), and decreased the left-to-right, end-diastolic pressure gradient (P = 0.023). Percent increase of RV dP/dt(max) was greater than LV dP/dt(max) (P = 0.014). There were no increases in end-diastolic pressure to account for increases in dP/dt(max). In control and RVPO, RV dP/dt(max) was linearly related to A(PP) (r = 0.779, P < 0.001). The relation of CO to A(PP) was curvilinear, with a peak in CO with positive A(PP) in the control state (P = 0.004) and with A(PP) approaching zero during RVPO (P = 0.001). These observations imply that, in our model, BiVP optimization improves CO by augmenting RV contractility. This is mediated by changes in mechanical interventricular synchrony. Afterload increases during RVPO exaggerate this effect, making CO critically dependent on simultaneous pressure generation in the RV and LV, with support of RV contractility by transmission of LV pressure across the interventricular septum. 相似文献
2.
Moreira-Gonçalves D Henriques-Coelho T Fonseca H Ferreira RM Amado F Leite-Moreira A Duarte JA 《American journal of physiology. Heart and circulatory physiology》2011,300(3):H1044-H1052
The present study evaluated the impact of moderate exercise training on the cardiac tolerance to acute pressure overload. Male Wistar rats were randomly submitted to exercise training or sedentary lifestyle for 14 wk. At the end of this period, the animals were anaesthetized, mechanically ventilated, and submitted to hemodynamic evaluation with biventricular tip pressure manometers. Acute pressure overload was induced by banding the descending aorta to induce a 60% increase of peak systolic left ventricular pressure during 120 min. This resulted in the following experimental groups: 1) sedentary without banding (SED + Sham), 2) sedentary with banding (SED + Band), and 3) exercise trained with banding (EX + Band). In response to aortic banding, SED + Band animals could not sustain the 60% increase of peak systolic pressure for 120 min, even with additional narrowing of the banding. This was accompanied by a reduction of dP/dt(max) and dP/dt(min) and a prolongation of the time constant tau, indicating impaired systolic and diastolic function. This impairment was not observed in EX + Band (P < 0.05 vs. SED + Band). Additionally, compared with SED + Band, EX + Band presented less myocardial damage, exhibited attenuated protein expression of active caspase-3 and NF-κB (P < 0.016), and showed less protein carbonylation and nitration (P < 0.05). These findings support our hypothesis that exercise training has a protective role in the modulation of the early cardiac response to pressure overload. 相似文献
3.
4.
Background
Right ventricular (RV) dysfunction is a complication of pulmonary hypertension and portends a poor prognosis. Pharmacological therapies targeting RV function in pulmonary hypertension may reduce symptoms, improve hemodynamics, and potentially increase survival. We hypothesize that recombinant human angiotensin-converting enzyme 2 (rhACE2) will improve RV function in a pressure overload model.Results
rhACE2 administered at 1.8 mg/kg/day improved RV systolic and diastolic function in pulmonary artery banded mice as measured by in vivo hemodynamics. Specifically, rhACE2 increased RV ejection fraction and decreased RV end diastolic pressure and diastolic time constant (p<0.05). In addition, rhACE2 decreased RV hypertrophy as measured by RV/LV+S ratio (p<0.05). There were no significant negative effects of rhACE2 administration on LV function. rhACE2 had no significant effect on fibrosis as measured by trichrome staining and collagen1α1 expression. In pulmonary artery banded mice, rhACE2 increased Mas receptor expression and normalized connexin 37 expression.Conclusion
In a mouse RV load-stress model of early heart failure, rhACE2 diminished RV hypertrophy and improved RV systolic and diastolic function in association with a marker of intercellular communication. rhACE2 may be a novel treatment for RV failure. 相似文献5.
Roncon-Albuquerque R Vasconcelos M Lourenço AP Brandão-Nogueira A Teles A Henriques-Coelho T Leite-Moreira AF 《Life sciences》2006,78(22):2633-2642
OBJECTIVE: We investigated the effects of acute volume and RV pressure overload on biventricular function and gene expression of BNP, pro-inflammatory cytokines (IL-6 and TNF-alpha), iNOS, growth factors (IGF-1, ppET-1), ACE and Ca2+-handling proteins (SERCA2a, phospholamban and calsequestrin). METHODS: Male Wistar rats (n=45) instrumented with pressure tip micromanometers in right (RV) and left ventricular (LV) cavities were assigned to one of three protocols: i) Acute RV pressure overload induced by pulmonary trunk banding in order to double RV peak systolic pressure, during 120 or 360 min; ii) acute volume overload induced by dextran40 infusion (5 ml/h), during 120 or 360 min; iii) Sham. RV and LV samples were collected for mRNA quantification. RESULTS: BNP upregulation was restricted to the overloaded ventricles. TNF-alpha, IL-6, ppET-1, SERCA2a and phospholamban gene activation was higher in volume than in pressure overload. IGF-1 overexpression was similar in both types of overload, but was limited to the RV. TNF-alpha and CSQ mRNA levels were increased in the non-overloaded LV after pulmonary trunk banding. No significant changes were detected in ACE or iNOS expression. RV end-diastolic pressures positively correlated with local expression of BNP, TNF-alpha, IL-6, IGF-1, ppET-1 and SERCA2a, while RV peak systolic pressures correlated only with local expression of IL-6, IGF-1 and ppET-1. CONCLUSIONS: Acute cardiac overload alters myocardial gene expression profile, distinctly in volume and pressure overload. These changes correlate more closely with diastolic than with systolic load. Nonetheless, gene activation is also present in the non-overloaded LV of selectively RV overloaded hearts. 相似文献
6.
Voeller RK Aziz A Maniar HS Ufere NN Taggar AK Bernabe NJ Cupps BP Moon MR 《American journal of physiology. Heart and circulatory physiology》2011,301(6):H2362-H2371
Increased right atrial (RA) and ventricular (RV) chamber volumes are a late maladaptive response to chronic pulmonary hypertension. The purpose of the current investigation was to characterize the early compensatory changes that occur in the right heart during chronic RV pressure overload before the development of chamber dilation. Magnetic resonance imaging with radiofrequency tissue tagging was performed on dogs at baseline and after 10 wk of pulmonary artery banding to yield either mild RV pressure overload (36% rise in RV pressure; n = 5) or severe overload (250% rise in RV pressure; n = 4). The RV free wall was divided into three segments within a midventricular plane, and circumferential myocardial strain was calculated for each segment, the septum, and the left ventricle. Chamber volumes were calculated from stacked MRI images, and RA mechanics were characterized by calculating the RA reservoir, conduit, and pump contribution to RV filling. With mild RV overload, there were no changes in RV strain or RA function. With severe RV overload, RV circumferential strain diminished by 62% anterior (P = 0.04), 42% inferior (P = 0.03), and 50% in the septum (P = 0.02), with no change in the left ventricle (P = 0.12). RV filling became more dependent on RA conduit function, which increased from 30 ± 9 to 43 ± 13% (P = 0.01), than on RA reservoir function, which decreased from 47 ± 6 to 33 ± 4% (P = 0.04), with no change in RA pump function (P = 0.94). RA and RV volumes and RV ejection fraction were unchanged from baseline during either mild (P > 0.10) or severe RV pressure overload (P > 0.53). In response to severe RV pressure overload, RV myocardial strain is segmentally diminished and RV filling becomes more dependent on RA conduit rather than reservoir function. These compensatory mechanisms of the right heart occur early in chronic RV pressure overload before chamber dilation develops. 相似文献
7.
Ventricular remodelling following acute coronary syndromes is both complex and multiform. It is due to the response of the myocardium to the different agressions associated with these syndromes, in particular the ischemia and necrosis downstream of the occluded artery. We must not however neglect the role of the remodelling of the lesions resulting from spontaneous reperfusion or provoked by the cells and tissues associated with coronary microcirculation embolisms and the no-reflow phenomenon. Acute post-infarct remodelling is dominated by early ventricular dilatation which largely affects late prognosis, necrosis elimination and its replacement by a fibrotic scar in parallel with a compensatory hypertrophy of the non-infarcted myocardium. The diverse cellular and molecular components of this remodelling are increasingly well-known, allowing us to better explain the beneficial effects of the currently available medications and providing us with new potential therapeutic targets. A grading of this knowledge associated with the identification of new risk factors and early therapeutic interventions should help us to further limit the deleterious aspects of this remodelling in the goal of preventing, or at least delaying, the devolution towards heart failure. 相似文献
8.
Greyson C Xu Y Lu L Schwartz GG 《American journal of physiology. Heart and circulatory physiology》2000,278(5):H1414-H1420
Volume expansion and inotropic stimulation are used clinically to augment cardiac output during acute right ventricular (RV) pressure overload. We previously showed that a brief period of RV pressure overload causes RV free wall dysfunction that persists after normal loading conditions have been restored. However, the impact of volume expansion and inotropic stimulation on the severity of RV dysfunction after acute pressure overload is unknown. We hypothesized that the severity of RV dysfunction after RV pressure overload would be related to the level of RV free wall systolic stress during RV pressure overload, rather than to the specific interventions used to augment RV function. Chloralose-anesthetized, open-chest pigs were subjected to 1 h of RV pressure overload caused by pulmonary artery constriction, followed by 1 h of recovery after release of pulmonary artery constriction. A wide range of RV free wall systolic stress during RV pressure overload was achieved by either closing or opening the pericardium (to simulate volume expansion) and by administering or not administering dobutamine. The severity of RV free wall dysfunction 1 h after RV pressure overload was strongly and directly correlated with the values of two hemodynamic variables during RV pressure overload: RV free wall area at peak RV systolic pressure (determined by sonomicrometry) and peak RV systolic pressure, two of the major determinants of peak RV free wall systolic stress. Opening or closing the pericardium, and using or not using dobutamine during RV pressure overload, had no independent effects on the severity of RV dysfunction. The findings suggest that the goal of therapeutic intervention during RV pressure overload should be to achieve the required augmentation of cardiac output with the smallest possible increase in RV free wall systolic stress. 相似文献
9.
Gibbons Kroeker CA Adeeb S Shrive NG Tyberg JV 《American journal of physiology. Heart and circulatory physiology》2006,290(6):H2432-H2438
Pulmonary artery constriction (PAC), a model of right ventricular (RV) pressure overload, flattens or inverts the septum and may flatten the left ventricular (LV) free wall. Finite element (FE) analysis predicts that such deformations may cause substantial compression. This study tests the hypothesis that deformation-induced myocardial compressive stress impedes coronary blood flow (CBF). Colored microspheres ( approximately 2 x 10(6)) were injected into the left atrium of 13 open-chest, anesthetized dogs under control conditions and during PAC, which decreased the end-diastolic transseptal pressure gradient (LV - RV) from 1.6 +/- 1.3 to -3.4 +/- 1.7 mmHg. Septal and LV deformation was assessed with the use of two-dimensional echocardiography, and by FE analysis, the hydrostatic component of stress was assessed. Postmortem, a 2.5-cm wide, LV equatorial ring was divided into 16 endocardial and epicardial samples. PAC decreased CBF in the FE-predicted compression zones, areas with the greatest compression having the greatest reductions in CBF. During PAC, compression reached a maximum of 25.3 +/- 1.8 mmHg on the (LV) endocardial sides of the RV insertion points, areas that saw CBF decrease from 1.05 +/- 0.08 to 0.68 +/- 0.05 ml.min(-1).g(-1) (P < 0.001), more than 30%. CBF decreased (from 1.08 +/- 0.07 to 0.81 +/- 0.07 ml.min(-1).g(-1); P < 0.001) on the RV side of the midseptum, an area with as much as 16.0 +/- 1.0 mmHg of compression. Overall, average compressions of 10 mmHg decreased CBF by approximately 30%. We conclude that acute RV pressure overload deforms the septum and LV and induces compressive stresses that reduce CBF substantially. This may help explain why some patients with pulmonary hypertension and no critical coronary disease have chest discomfort indistinguishable from angina pectoris. 相似文献
10.
Maniar HS Prasad SM Gaynor SL Chu CM Steendijk P Moon MR 《American journal of physiology. Heart and circulatory physiology》2003,284(1):H350-H357
Optimization of right atrial (RA) mechanics is important for maintaining right ventricular (RV) filling and global cardiac output. However, the impact of pericardial restraint on RA function and the compensatory role of the right atrium to changes in RV afterload remain poorly characterized. In eight open-chest sheep, RA elastance (contractility) and chamber stiffness were measured (RA pressure-volume relations) at baseline and during partial pulmonary artery (PA) occlusion. Data were collected before and after pericardiotomy. With the pericardium intact and partial PA occlusion, RA elastance increased by 28% (P < 0.04), whereas RA stiffness tended to rise (P = 0.08). However, after pericardiotomy, there was a significant fall in both RA elastance (54%, P < 0.04) and stiffness (39%, P < 0.04), and subsequent PA occlusion failed to induce a change in elastance (P > 0.19) or stiffness (P > 0.84). After pericardiotomy, RA elastance and stiffness fell dramatically, and the compensatory response of the right atrium to elevated RV afterload was lost. The ability of the right atrium to respond to changes in RV hemodynamics is highly dependent on pericardial integrity. 相似文献
11.
Buys ES Raher MJ Blake SL Neilan TG Graveline AR Passeri JJ Llano M Perez-Sanz TM Ichinose F Janssens S Zapol WM Picard MH Bloch KD Scherrer-Crosbie M 《American journal of physiology. Heart and circulatory physiology》2007,293(1):H620-H627
Although nitric oxide synthase (NOS)3 is implicated as an important modulator of left ventricular (LV) remodeling, its role in the cardiac response to chronic pressure overload is controversial. We examined whether selective restoration of NOS3 to the hearts of NOS3-deficient mice would modulate the LV remodeling response to transverse aortic constriction (TAC). LV structure and function were compared at baseline and after TAC in NOS3-deficient (NOS3(-/-)) mice and NOS3(-/-) mice carrying a transgene directing NOS3 expression specifically in cardiomyocytes (NOS3(-/-TG) mice). At baseline, echocardiographic assessment of LV dimensions and function, invasive hemodynamic measurements, LV mass, and myocyte width did not differ between the two genotypes. Four weeks after TAC, echocardiographic and hemodynamic indexes of LV systolic function indicated that contractile performance was better preserved in NOS3(-/-TG) mice than in NOS3(-/-) mice. Echocardiographic LV wall thickness and cardiomyocyte width were greater in NOS3(-/-) mice than in NOS3(-/-TG) mice. TAC-induced cardiac fibrosis did not differ between these genotypes. TAC increased cardiac superoxide generation in NOS3(-/-TG) but not NOS3(-/-) mice. The ratio of NOS3 dimers to monomers did not differ before and after TAC in NOS3(-/-TG) mice. Restoration of NOS3 to the heart of NOS3-deficient mice attenuates LV hypertrophy and dysfunction after TAC, suggesting that NOS3 protects against the adverse LV remodeling induced by prolonged pressure overload. 相似文献
12.
Mor-Avi V Collins KA Korcarz CE Shah M Spencer KT Lang RM 《American journal of physiology. Heart and circulatory physiology》2001,280(4):H1770-H1781
Echocardiographic diagnosis of myocardial ischemia is based on visualizing hypokinesis, which occurs late in the ischemic cascade. We hypothesized that temporal changes in endocardial motion may constitute sensitive early markers of ischemia. Two protocols were performed in 19 anesthetized pigs. Protocol 1 included 54 intracoronary balloon occlusions. Transthoracic images were acquired at baseline and every 15 s during 5 min of occlusion and reperfusion. In protocol 2, ischemia was induced in 12 animals by use of graded dobutamine infusion, after creating significant partial occlusions without a resting wall motion abnormality. Systolic and diastolic endocardial motion was color encoded using color kinesis and analyzed using custom software. All ischemic episodes caused detectable and reversible changes. The earliest sign of ischemia was tardokinesis in 31/54 occlusions, whereas hypokinesis appeared first in 23/54 cases. Dobutamine-induced ischemia caused tardokinesis first in 9/12 and hypokinesis in 3/12 animals. Reversible ischemic changes in regional left ventricular performance can be objectively detected using analysis of echocardiographic images and will likely improve the early noninvasive diagnosis of acute ischemia. 相似文献
13.
Ishibashi Y Rembert JC Carabello BA Nemoto S Hamawaki M Zile MR Greenfield JC Cooper G 《American journal of physiology. Heart and circulatory physiology》2001,280(1):H11-H16
Severe left ventricular volume overloading causes myocardial and cellular contractile dysfunction. Whether this is also true for severe right ventricular volume overloading was unknown. We therefore created severe tricuspid regurgitation percutaneously in seven dogs and then observed them for 3.5-4.0 yr. All five surviving operated dogs had severe tricuspid regurgitation and right heart failure, including massive ascites, but they did not have left heart failure. Right ventricular cardiocytes were isolated from these and from normal dogs, and sarcomere mechanics were assessed via laser diffraction. Right ventricular cardiocytes from the tricuspid regurgitation dogs were 20% longer than control cells, but neither the extent (0.171 +/- 0.005 microm) nor the velocity (2.92 +/- 0.12 microm/s) of sarcomere shortening differed from controls (0.179 +/- 0.005 microm and 3.09 +/- 0.11 microm/s, respectively). Thus, despite massive tricuspid regurgitation causing overt right heart failure, intrinsic right ventricular contractile function was normal. This finding for the severely volume-overloaded right ventricle stands in distinct contrast to our finding for the left ventricle severely volume overloaded by mitral regurgitation, wherein intrinsic contractile function is depressed. 相似文献
14.
Robotham J. L.; Stuart R. S.; Borkon A. M.; Doherty K.; Baumgartner W. 《Journal of applied physiology》1988,65(4):1662-1675
The cause of the fall in left ventricular (LV) stroke volume (SV) during a fall in pleural pressure (Pp1) has been in dispute for over a century. We have defined the changes in the temporal relationship between LV inflow (Qm) and outflow (Qa) in a canine preparation to test the mutually exclusive hypotheses that the fall in LVSV is caused only by changes during diastole (e.g., ventricular interdependence) or only by changes during systole (e.g., afterload). The ability of the experimental preparation to measure the results of acute changes in right heart volume or output and acute changes in LV afterload was validated in open-chest studies with and without pericardial constraint. In closed-chest studies, with a fall in Pp1 during a Mueller maneuver Qm reached both its inspiratory minimum and expiratory maximum before Qa in 80% of the Mueller maneuvers, invalidating both hypotheses, which each required that one flow lead the other in 100% of the Mueller maneuvers. Review of individual records suggested that if the rapid changes in Pp1 occurred during systole, Qa could vary in a manner independent of the preceding Qm. These studies suggest that both diastolic and systolic events may contribute to the fall in SV, while causing opposite changes in LV volumes. 相似文献
15.
Hutchinson KR Guggilam A Cismowski MJ Galantowicz ML West TA Stewart JA Zhang X Lord KC Lucchesi PA 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(6):1778-1788
Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload. 相似文献
16.
Tan MS Chai CY Wu JR Yeh JL Chen IJ Kwan AL Jeng AY Yang HY Lee MH Dai ZK 《Experimental biology and medicine (Maywood, N.J.)》2006,231(6):948-953
Pressure overload in the left ventricle of the heart follows a chronic and progressive course, resulting in eventual left heart failure and pulmonary hypertension (PH). The purpose of this research was to determine whether a differential pulmonary gene change of endothelin (ET)-1 and endothelial nitric oxide synthase (eNOS) occurred in adult rats with left ventricular overload. Eight groups of eight rats each were used (four rats with banding and four rats with sham operations). The rats underwent ascending aortic banding for 1 day, 2 weeks, 4 weeks, and 12 weeks before sacrifice. Significant medial hypertrophy of the pulmonary arterioles developed in two groups (4 and 12 weeks). Increased pulmonary arterial pressures were noted in three groups (1 day, 4 weeks, and 12 weeks). The aortic banding led to significant increases in pulmonary preproET-1 messenger RNA (mRNA) at 1 day and 12 weeks, and in pulmonary eNOS mRNA at 1 day and 12 weeks. In addition, there was increased pulmonary eNOS content at 1 day and 12 weeks in the banded rats, and increased lung cGMP levels were observed at 1 day. Increased lung ET-1 levels were also noted at 1 day (banded, 310 +/- 12 ng/g protein; sham, 201 +/- 12 ng/g protein; P < 0.01), 4 weeks (banded, 232 +/- 12 ng/g protein; sham, 201 +/- 12 ng/g protein; P < 0.01) and 12 weeks (banded, 242 +/- 12 ng/g protein; sham, 202 +/- 12 ng/g protein; P < 0.01). This indicates that the upregulated expression of ET-1 developed at least 4 weeks before eNOS expression in the course of PH, and, thus, medication against ET-1 could play a crucial role in treating PH with cardiac dysfunction secondary to aortic banding. 相似文献
17.
Background
Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear.Methodology/Principal Findings
RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats.Conclusions/Significance
Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during the early stages of PAH. 相似文献18.
19.
Pasipoularides A Shu M Shah A Womack MS Glower DD 《American journal of physiology. Heart and circulatory physiology》2003,284(4):H1064-H1072
Functional imaging computational fluid dynamics simulations of right ventricular (RV) inflow fields were obtained by comprehensive software using individual animal-specific dynamic imaging data input from three-dimensional (3-D) real-time echocardiography (RT3D) on a CRAY T-90 supercomputer. Chronically instrumented, lightly sedated awake dogs (n = 7) with normal wall motion (NWM) at control and normal or diastolic paradoxical septal motion (PSM) during RV volume overload were investigated. Up to the E-wave peak, instantaneous inflow streamlines extended from the tricuspid orifice to the RV endocardial surface in an expanding fanlike pattern. During the descending limb of the E-wave, large-scale (macroscopic or global) vortical motions ensued within the filling RV chamber. Both at control and during RV volume overload (with or without PSM), blood streams rolled up from regions near the walls toward the base. The extent and strength of the ring vortex surrounding the main stream were reduced with chamber dilatation. A hypothesis is proposed for a facilitatory role of the diastolic vortex for ventricular filling. The filling vortex supports filling by shunting inflow kinetic energy, which would otherwise contribute to an inflow-impeding convective pressure rise between inflow orifice and the large endocardial surface of the expanding chamber, into the rotational kinetic energy of the vortical motion that is destined to be dissipated as heat. The basic information presented should improve application and interpretation of noninvasive (Doppler color flow mapping, velocity-encoded cine magnetic resonance imaging, etc.) diastolic diagnostic studies and lead to improved understanding and recognition of subtle, flow-associated abnormalities in ventricular dilatation and remodeling. 相似文献