首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasma membrane of the hepatoma cell line, HTC cells, has been characterized and purified by cell fractionation techniques. In the absence of true 5′-nucleotidase in HTC cells, alkaline phosphodiesterase I has been used as a marker enzyme, following conclusions gained from differential and isopycnic centrifugation studies (Lopez Saura, P., Trouet A. and Tulkens P. (1978) Biochim. Biophys. Acta 543, 430–449). To confirm this localization, HTC cells were exposed to anti-plasma membrane IgG at 4°C and fractionated. Alkaline phosphodiesterase I and IgG showed super imposable distribution patterns in linear sucrose gradients. Alkaline phosphodiesterase I is, however, only poorly resolved from enzyme markers of other organelles, especially NADPH-cytochrome c reductase (endoplasmic reticulum) and galactosyltransferase (Golgi complex). Maximal purification from the homogenate is only 13-fold, on a protein basis, even when using a microsomal fraction (67 and 13% of alkaline phosphodiesterase I and protein, respectively) as the starting material. Improved resolution can be obtained after the addition of small quantities of digitonin (equimolar with respect to the cholesterol content). Digitonin increases the buoyant density of alkaline phosphodiesterase I by approx. 0.05 g/cm3, whereas the buoyant densities of galactosyltransferase and NADPH-cytochrome c reductase are increased only by 0.03 and 0.015 g/cm3, respectively. Accordingly, a procedure has been designed which yields a fraction containing 22.8% of alkaline phosphodiesterase I with a purification of 21-fold on a protein basis. The content of NADPH-cytochrome c reductase and galactosyltransferase is 1.2 and 2.1%, respectively. Electron microscopy shows smooth surface membrane elements and vesicles, with only occasional other recognizable elements.  相似文献   

2.
The effect of cycloheximide on the chloroplastic, cytoplasmic and mitochondrial phenylalanyltransferRNA synthetases of Euglena gracilis was studied by growing both logarithmic and stationary phase cultures in the presence of the antibiotic. Enzyme activity was measured relative to untreated control cultures. At very low concentrations of cycloheximide (1 g/ml), all three log phase enzymes showed an increase in activity of 40–50%. At slightly higher concentrations (2.5 g/ml), the phenylalanyl-tRNA synthetase activities were comparable to those of the control cultures. At a cycloheximide concentration of 5g/ml the enzyme activities from stationary phase cultures showed only very slight decreases (5–20%). The cytoplasmic and mitochondrial enzymes behaved similarly in log phase cultures at this concentration. However, the chloroplastic phenylalanyl-tRNA synthetase from log phase cultures treated with 5g/ml cycloheximide showed a marked decrease in activity (70%). A further increase in antibiotic concentration to 10g/ml resulted in significant losses of activity of all three enzymes, from both growth stages. The implications of the data with regard to identification of the site(s) of chloroplast enzyme synthesis are discussed.  相似文献   

3.
Cyclic nucleotide phosphodiesterase activities in soluble Neurospora crassa mycelial extracts were resolved into two peaks, phosphodiesterase I and II, by chromatography on DEAE-cellulose columns. Phosphodiesterase I hydrolysed cyclic AMP and cyclic GMP equally well. Phosphodiesterase II was active on cyclic GMP but scarcely active on cyclic AMP. Phosphodiesterase I was resolved by gel filtration and sucrose-density-gradient centrifugation into three peaks having molecular weights of about 57 000, 125 000 and 225 000. This suggests that this enzyme activity has at least three aggregation forms, tentatively defined as monomeric, dimeric and tetrameric. Similarly, phosphodiesterase II was resolved into two forms, having molecular weights of about 170 000 and 320 000. Evidence on the interconversion between phosphodiesterase I forms was obtained.  相似文献   

4.
Broken cell preparations of WI-38 and SV40-transformed WI-38 (VA13) fibroblasts were used to compare the cyclic nucleotide phosphodiesterase activities of the two cell strains. The bulk of the cAMP or cGMP phosphodiesterase activity of WI-38 and VA13 homogenates was found in the 100,000 x g fibroblast supernatant fractions. WI-38 and VA13 soluble phosphodiesterase activities showed anomalous kinetic behavior with either cAMP or cGMP as the substrate. At low substrate concentrations, e.g., 0.1 muM, WI-38 supernatant fractions hydrolyzed cGMP much more rapidly than cAMP. At high substrate concentrations, e.g., 100muM, the same enzyme preparations degraded cAMP more than twice as fast as cGMP. In contrast, VA13 soluble phosphodiesterase activity catalyzed the hydrolysis of a wide range of cAMP and cGMP concentrations at similar rates. Phosphodiesterase activity in WI-38 supernatant fractions was generally more sensitive than that of the comparable VA13 enzyme activity to inhibition by MIX and papaverine. The cAMP phosphodiesterase activity of both WI-38 and VA13 supernatant preparations was decreased by cGMP in a concentration-dependent manner. cAMP was an effective inhibitor of cGMP hydrolysis by VA13 soluble phosphodiesterase activity. Yet, the cGMP phosphodiesterase activity of WI-38 supernatant fractions was only slightly reduced in the presence of cAMP. DEAE-cellulose chromatography of WI-38 and VA13 supernatant preparations revealed two major peaks of phosphodiesterase activity for each cell type. WI-38 peak I showed much greater activity with 1muM cGMP than with 1muM cAMP and appeared to be composed of two different phosphodiesterase activities. WI-38 peak Ia included phosphodiesterase activity which could be stimulated by boiled, dialyzed fibroblast homogenates while WI-38 peak Ib coincided with column fractions which contained most of the cyclic GMP hydrolytic activity. VA13 peak I phosphodiesterase activity was eluted from DEAE cellulose columns at the same ionic strength as WI-38 peak Ia and hydrolyzed these two substrates at nearly identical rates. This enzyme activity was also increased in the presence of boiled, dialyzed fibroblast preparations. Peak II phosphodiesterase activities from both WI-38 and VA13 fibroblasts were relatively specific for cAMP as the substrate. Phosphodiesterase activity with the properties of WI-38 peak Ib was not isolated from VA13 supernatant fractions. These results suggested that the dissimilar patterns of cAMP accumulation in WI-38 and VA13 cultures may be at least partially related to different phosphodiesterase activities in the normal and the transformed fibroblasts.  相似文献   

5.
6.
Summary Cells of Rhodotorula gracilis cultured in a liquid medium containing Zn only as impurity stop growing at a density of about 5·107 cells/ml. The addition of Zn during the prestationary or the stationary phase of growth reestablishes the growth rate, thus showing that Zn++ is a limiting factor for growth. An analysis of the changes of the fine structure and of RNA, DNA and protein levels induced by the addition of Zn to Zn-deficient cultures indicates that the most notable features of Zn deficiency are: a) the decrease of net RNA synthesis, and consequently of protein synthesis; b) the appearance of several large vacuole-like structures containing degraded cytoplasmic components, membranous whorls and amorphous material; a decrease in the number of mitochondria and in the organization of cristae. The net synthesis of DNA appears to be much less affected, and lipid synthesis is somewhat stimulated in the Zn-deficient cultures. No important effect of Zn-deficiency was observed on either oxygen uptake or intracellular amino acid level. These results are interpreted as indicating that Zn++ is an essential element for this organism, and that the area of RNA metabolism and protein synthesis is the one primarily affected by Zn++ deficiency.  相似文献   

7.
When either colistin at 1,000 μg/ml or sulfisomezole at 125 μg/ml was used separately, growth of a strain of Proteus mirabilis was not inhibited. However, when 1 μg/ml of colistin and 25 μg/ml of sulfisomezole were used together in agar media, growth was inhibited. The synergistic action of colistin and sulfisomezole was also demonstrated in broth culture, when a smaller inoculum such as 106 cells/ml was used. The lethal and lytic effect of this synergism parallels the characteristic effect of colistin towards colistin-sensitive gram-negative organisms. When the mode of this synergistic action was analyzed by adding each compound in sequence to a growing culture of Proteus, it was found that growth of organism for about 4 generations in the presence of sulfisomezole was a prerequisite for revealing the lethal and lytic effects of colistin. In cultures where these two compounds were present at the beginning of incubation, the synergistic effect was abolished by the addition of p-aminobenzoic acid (PABA) at an early stage of incubation, but not at a late stage. Methionine, serine, and betaine, when used together, had the same effect as PABA. An insufficiency of the three compounds induced by sulfisomezole, was considered to afford the receptor site of colistin to Proteus.  相似文献   

8.
Several in vitro properties of partially purified form II RNA polymerase from Drosophila melanogaster embryo nuclei are described. The enzyme preparation is free from contaminating RNase, protein kinase, and polyphosphate kinase activities and can be used to study the incorporation of -32P-labeled nucleoside triphosphates. The enzyme exhibits a biphasic heat inactivation pattern which is probably related to differential lability of its two subforms. However, a considerable protection against heat inactivation is provided by the nucleoside triphosphates present in the in vitro reaction system such that the enzyme catalyzes RNA synthesis in a nearly linear mode for over 2 hr at 30 C. Two initiation inhibitors, rifamycin AF/013 and polyriboinosinic acid (poly[I]), were tested against this enzyme. Rifamycin AF/013 was found unsuitable for critical studies because of the high concentrations necessary for total inhibition (200 µg/ml) and particularly because of the obligate use of solvents which secondarily have a destabilizing effect on native DNA. Poly[I] was found to effectively block initiation at very low concentrations (1 µg/ml). The enzyme rapidly forms poly[I]-resistant preinitiation complexes on both double- and single-stranded DNA. These complexes decay with a half-life of 2.5–3 min. RNA synthesis from poly[I]-resistant complexes amounts to 10% of the total potential synthesis on both double- and single-stranded DNA. Enzyme-DNA saturation experiments indicate that the form II enzyme discriminates two types of sites on Drosophila DNA, tight binding and weak binding, from which RNA synthesis proceeds slowly and rapidly, respectively. The tight-binding sites appear to be analogous to those sites with which the enzyme is able to form poly[I]-resistant complexes.This investigation was supported by funds from The National Research Council of Canada (NRC A9722).  相似文献   

9.
Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen.  相似文献   

10.
Linoleic acid was shown to be the only detectable nematicidal agent in the mycelial extracts of several predacious fungi of the genus Arthrobotrys. Although the compound is present in saprophytic cultures, induction of trap formation by nematodes or phenylalnyl-valine caused a significant increase in its production. In submerged cultures, the number of traps formed by Arthrobotrys conoides and Arthrobotrys oligospora was directly correlated to the increase of the concentration of linoleic acid. In A. conoides, the ratio of ergosterol to linoleic acid decreased from 2.6 in saprophytic cultures to 1.1 in trap-forming cultures induced with nematodes. Linoleic acid exhibited nematicidal activities towards the free-living nematode Caenorhabditis elegans with an LD50 value of 5 g/ml.  相似文献   

11.
White-rot fungi of the Phylum Basidiomycota are quite promising in ligninolytic enzyme production and the optimization of their synthesis is of particular significance. The aim of this study was to investigate the effect of enhanced concentration of copper (Cu) ions (25–1000 μg/ml) on the activity of the ligninolytic enzyme complex (laccase, Lac; lignin peroxidase, LiP; Mn-peroxidase, MnP) in Trametes trogii 46, as well as the changes in the antioxidant cell response. All concentrations tested reduced significantly in growth and glucose consumption. Cu ions affected the ligninolytic enzyme activity in a dose dependent manner. Concentrations in the range of 25–100 μg/ml strongly stimulated Lac production (a 5–6-fold increase compared to the control). LiP activity was also induced by Cu, with the peak value being recorded following exposure to 50 μg/ml metal ions. In contrast, the addition of Cu ions had a positive effect on MnP activity at a concentration higher than 100 μg/ml. The maximum enzyme level was achieved at 1000 μg/ml. The results obtained on superoxide dismutase and catalase activities indicated that exposure of T. trogii 46 mycelia to Cu ions promoted oxidative stress. Both enzyme activities were co-ordinately produced with Lac and LiP but not co-ordinately with MnP.  相似文献   

12.
The isolation of chloramphenicol resistant strains from Corynebacterium hydrocarboclastus KY 4339 (rough type) was examined to seek a good source of corynecins (analogs of chloramphenicol). Various mutants resistant to chloramphenicol were isolated in the range from 50 to 1000 µg/ml by adaptation or induced mutagenesis by N-methyl-N′-nitro-N-nitro-soguanidine. Productivities of mutants related apparently to the degree of resistance from 50 to 500 µg/ml. Highly resistant mutants capable of growing in the presence of 1000 µg of chloramphenicol per ml showed decreased productivity which might be related to their lower growth rate in the fermentation medium.

Further attempts to derive resistant mutants to structural analogs of aromatic amino acids resulted in only a slight improvement of productivity, indicating that aromatic amino acids might play minor regulatory roles in corynecins synthesis.

The increase in productivity of corynecins by the best strain was about 4.5 fold of the parental strain.  相似文献   

13.
The formation of xylanolytic enzymes byButyrivibrio fibrisolvens NCFB 2249 was induced by xylan, xylo-oligosaccharides, and xylobiose. Inhibition of RNA or protein synthesis prevented inducetion, and enzyme formation occured only when anaerobiosis was maintained. The rate of enzyme inducetion by xylan was affected by pH and inducer concentration, and highest levels of activity occurred when the initial pH and xylan concentration were pH 6.5–7 and 2 mg/ml respectively. The ability of the cells to respond to the inducer was reduced in slowly growing cells, although cells that were grown at dilution rates that appertain in the rumen ecosystem responded rapidly to the inducer.Butyrivibrio fibrisolvens also exhibited diauxic characteristics of carbohydrate utilization, and in consequence enzyme induction and xylanolysis were delayed until readily metabolized sugars (e. g., glucose, arabinose) had been consumed.  相似文献   

14.
The intracellular distribution of phosphodiesterase [EC 3.1.4.17] induced by cyclic adenosine 3',5'-monophosphate (cAMP) in Dictyostelium discoideum was studied. When cAMP-treated cells were homogenized and fractionated according to the method of de Duve et al. ((1955) Biochem, J. 60, 604), the specific activity of phosphodiesterase was highest in the light mitochondrial fraction. Peaks of specific activities of alkaline phosphatase (marker enzyme of membrane) and catalase (marker enzyme of peroxisomes) also appeared in the same fraction as phosphodiesterase. However, after centrifugation of the light mitochondrial fraction in a sucrose density gradient, the activity of phosphodiesterase was clearly separated with that of catalase (density 1.19 g/ml) and showed three peaks at lower density (1.10, 1.13, 1.17 g/ml) with good reproducibility. Some parts (1.13, 1.17 g/ml) of the activity in the gradient overlapped with alkaline phosphatase activity, but in the density fraction of 1.10 g/ml the activity of alkaline phosphatase was hardly detectable. When the light mitochondrial fraction was treated with Emulgen 108, or sonicated, phosphodiesterase was more easily solubilized than alkaline phosphatase and catalase, and was found in supernate after centrifugation at 20,000 X g for 30 min. In order to distinguish the locations of the three enzymes, the supernatant of the light mitochondrial fraction treated with Emulgen 108 was subjected to charge shift electrophoresis. The electrophoretic mobilities of phosphodiesterase and catalase were unaffected by ionic detergent. However, alkaline phosphatase shifted towards the anode in the presence of anionic detergent (sodium deoxycholate), and shifted towards the cathode in cationic detergent (cetyltrimethylammonium bromide), relative to nonionic detergent (Emulgen 108) alone. Thus, some part of the phosphodiesterase induced by cAMP may be associated with the plasma membrane, but the remainder is localized in some kind of intracellular particle of lower density. Moreover, the association with the membrane or particle is more easily dissociated than that of alkaline phosphatase, and the liberated phosphodiesterase is rather hydrophilic.  相似文献   

15.
In extracts from both growing and differentiating (spherulating) plasmodia of the true slime mold Physarum polycephalum, high aminopeptidase activities were found. The specificity of the aminopeptidases changed during differentiation with a higher relative activity towards hydrophobic NH2-terminal amino acids. This change in specificity was found to be the result of a shift in the isoenzyme spectrum during differentiation as was tested by isoelectric focusing in sucrose gradients. Three different classes of isoenzymes were found: one band which was present in both growing and differentiating cultures; two bands which were found only in growing cultures; and four bands which were detectable only in differentiating plasmodia. If cycloheximide was applied during the induction of differentiation, only one band, the one present in both types of plasmodia, was found in the isoelectric focusing. Density labeling experiments using deuterated amino acids revealed that the bands which are present in differentiated plasmodia only are synthesized de novo during this differentiation.  相似文献   

16.
Summary Upon starvation, amoebae of the mutant strain HPX235 are unable to aggregate. Previous work has shown that this aggregateless character was associated with a nearly complete block in the production of the phosphodiesterase by these cells. Aggregation of the HPX235 amoebae can be induced with exogenous phosphodiesterase. In the present work, we show that both the aggregateless character and the block in phosphodiesterase production appear to result from the same recessive mutation, allocated to I.g.IV. Two other mutant strains displaying a comparable phenotype (HPX262 and HP594) were shown by complementation to belong to the same locus pdsA. Unlike wild type cells, the mutants of the locus pdsA cannot be induced to produce phosphodiesterase following treatment of the cells with exogenous cAMP, whether exogenous phosphodiesterase is present or not in the starvation buffer. It is concluded that pdsA is either the structural gene for the phosphodiesterase or a controlling element whose integrity is required for phosphodiesterase production. Mutations in pdsA share secondary effects among which the abnormally low production of the phosphodiesterase inhibitor. However, this effect can be overcome upon addition of exogenous phosphodiesterase, and most likely results from the lack of cAMP hydrolysis.The late development is also affected in pdsA mutants. Aggregates formed in the presence of exogenous phosphodiesterase cannot culminate normally. This suggests that the level of cAMP hydrolysis also plays a role during the late stages of development of Dictyostelium discoideum.Abbreviations used cAMP adenosine 3,5-cyclic monophosphoric acid - l.g. linkage group - PDE 3,5-cAMP phosphodiesterase  相似文献   

17.
To develop an economical industrial medium, untreated cane molasses (UCM) was tested as a carbon source for fermentation culturing of Escherichia coli. To test the industrial application of this medium, we chose a strain co-expressing a carbonyl reductase (PsCR) and a glucose dehydrogenase (BmGDH). Although corn steep liquor (CSL) could be used as an inexpensive nitrogen source to replace peptone, yeast extract could not be replaced in E. coli media. In a volume of 40 ml per 1-l flask, a cell concentration of optical density (OD600) 15.1 and enzyme activities of 6.51 U/ml PsCR and 3.32 U/ml BmGDH were obtained in an optimized medium containing 25.66 g/l yeast extract, 3.88 g/l UCM, and 7.1% (v/v) CSL. When 3.88 g/l UCM was added to the medium at 6 h in a fed-batch process, the E. coli concentration increased to OD600 of 24, and expression of both PsCR and BmGDH were twofold higher than that of a batch process. Recombinant cells from batch or fed-batch cultures were assayed for recombinant enzyme activity by testing the reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE). Compared to cells from batch cultures, fed-batch cultured cells showed higher recombinant enzyme expression, producing 560 mM CHBE in the organic phase with a molar yield of 92% and an optical purity of the (S)-isomer of >99% enantiomeric excess.  相似文献   

18.
Abstract— The activity of cyclic AMP phosphodiesterase of rat cerebral homogenates increased several-fold between 1 and 60 days of age. Enzyme activity in the cerebellum, on the other hand, did not increase during this period. A kinetic analysis of the phosphodiesterase activity revealed evidence for multiple forms of the enzyme and indicated that the postnatal increase in phosphodiesterase activity of rat cerebrum was due almost exclusively to the high Km enzyme. In cerebellum, the ratio of the high and low Km enzyme remained fairly constant during ontogenetic development. Physical separation of the phosphodiesterases contained in 100,000 g soluble supernatant fractions of sonicated brain homogenates by polyacrylamide disc gel electrophoresis confirmed the presence of multiple enzyme forms. In adult rats we found six distinct peaks of phosphodiesterase activity (designated I to VI according to the order in which they were eluted from the column) in cerebellum and 4 forms of the enzyme (Peaks I through IV) in cerebrum. Brains of newborn rats had a different pattern and ratio of phosphodiesterase activities. For example, Peak I phosphodiesterase was undetectable in cerebrum or cerebellum of newborn rats. Moreover, in the cerebellum of newborn rats Peak II was the dominant peak whereas in the cerebellum of adult rats Peak III was the largest peak. A comparison of the multiple forms of phosphodiesterase from the cerebrum of newborn and adult animals suggested that the postnatal increase in phosphodiesterase activity previously seen in crude homogenates was due largely to an increase in a high K, Peak II phosphodiesterase. The ratios of activities of the other peaks and their sensitivities to an activator of phosphodiesterase were similar in newborn and adult rats. An endogenous heat-stable activator of phosphodiesterase was found in cerebrum, cerebellum and brain stem. In newborn rats, the cerebellum contained several-fold less activity of this activator than did cerebrum or brain stem. However, the activity of this activator increased with age in the cerebellum and would appear to have decreased postnatally in cerebrum and brain stem. These results suggest that some multiple forms of phosphodiesterase can develop independently and that changes in activities of these phosphodiesterases may occur by increases in the quantity of enzyme or by changes in the quantity of an endogenous activator of phosphodiesterase.  相似文献   

19.
A gram-negative bacterium strongly lytic toward living cells of the food yeast Saccharomyces fragilis was isolated by continuous-flow enrichment from compost. The organism was identified as a species of Arthrobacter. The extracellular lytic enzyme complex produced by this bacterium contained β-1,3-glucanase, mannan mannohydrolase, and proteolytic activities. The polysaccharases were inducible by whole yeast cells. In chemostat cultures on chemically defined media, synthesis of the polysaccharases was very slight and only detectable at dilution rates below 0.02 hr?1. Enzyme production in defined media was not solely dependent on growth rate but also was influenced by the growth limiting substrate and the culture history. The production of individual depolymerases and of the lytic activity was studied in batch and chemostat cultures containing yeast as the limiting substrate. The maximum specific growth rate of the Arthrobacter under these conditions was 0.22 hr?1. β-1,3-Glucanase and proteolytic activities were synthesized by exponentially growing bacteria but maximum lytic titers did not develop until the specific growth rate was declining, at which time mannan mannohydrolase syntheses was induced. In yeast limited chemostats polysaccharase syntheses were greatest at the lowest dilution rates examined, namely 0.02 hr?1. Further optimization of enzyme production was achieved by feeding the Arthrobacter culture to a second-stage chemostat. A comparison of lytic enzyme productivities in batch and chemostat cultures has been made.  相似文献   

20.
Summary Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号