首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molar morphology and structure of seven groups of flesh-eating mammals (Deltatheroida, Borhyaenoidea, Stagodontidae, Dasyuroidea, Creodonta, Carnivora, and Prionogale ) are compared. The dental adaptations to carnivorous diet are remarkably similar in the seven groups. Derived taxa within these groups all possess a postvallum-prevallid shearing with a reduction of the paracone relative to the metacone (except in the Deltatheroida), a large postmetacrista, a reduced stylar shelf, a reduced protocone, a large blade-like paraconid and a reduced metaconid and talonid. The constancy of these features (regarded as a single functional complex) and of their evolutionary pattern in phylogenetically distant groups, is evidence of their high potential for homoplasy. Therefore these character states should be used with extreme care in reconstructing phylogeny and, when possible, associated to cranial features. Several phylogenetic interpretations using them are discussed, some of which are regarded as poorly supported.  相似文献   

2.
Abstract:  The known sample of the important pretribosphenic mammal Peramus tenuirostris, housed in the Natural History Museum (London, UK), was imaged using micro‐computed tomography (CT). Substantial morphological diversity was discovered, prompting establishment (and resurrection) of additional taxa from within the existing hypodigm of Peramus tenuirostris: Peramus dubius comb. nov., Kouriogenys minor gen. nov. and Peramuroides tenuiscus gen. et sp. nov. The Peramura are revised; this group is restricted to taxa with clear evidence of a fully functional upper molar embrasure for the dominant lower molar talonid cusp (hypoconid), either through development of wear facet 4 or through differentiation of a distinct hypoconulid. The Peramura are the most likely sister taxon to the Tribosphenida (including living marsupials and placentals) and represent a distinct molar morphotype, transitional between primitive lineages characterized by dominant orthal shear (e.g. dryolestoids) and those with modern, multi‐functional tribospheny. A very large masseteric foramen is identified in peramurans, but this feature appears to be autapomorphic and of uncertain function.  相似文献   

3.
Multituberculate anatomy is compared with that of other mammals, with an emphasis on the characters that have either been neglected or misinterpreted in previous analyses of early mam mal relationships. These are: brain structure, backward masticatory power stroke (along with aspects of cranial design), and foot structure. New data on ear ossicles and a controversy con cerning multituberculate posture are also discussed. The following characters of multitubercu late skull and lower jaw are interpreted to be related to the backward masticatory power stroke: anterior orbital area roofed dorsally and without a floor (characteristic of advanced multituber culates), parietal postorbital process, lack of the angular process and a more anterior position of the coronoid process and masseteric fossa than in all other mammals. It is argued that the parallel development in the cranial structure of multituberculates and other mammals was lim ited by the backward masticatory power stroke of multituberculates that resulted in different configuration of the masticatory musculature and related osteology. In the postcranial skeleton the parallelism was limited by the structure of the multituberculate foot, in which the calca-neum contacts the fifth metatarsal (MtV) and the middle metatarsal (MtIII) is abducted 30° from the longitudinal axis of the tuber calcanei. Backward masticatory power stroke and related skull design do not show unequivocally whether multituberculates originated from some ‘tri-conodonts’ (a polyphyletic group), or independently from all other mammals from cynodonts. The foot structure refutes the origin of multituberculates from the Morganucodontidae. The brain structure allies the multituberculates with the Triconodontidae, the postcranial skeleton of which remains unknown. New data on ear ossicles suggest close relationships of multituber culates to all modern mammals. Lack of uncontested pre-Kimmeridgian multituberculates dis proves the separate origin of multituberculates from cynodonts.  相似文献   

4.
Osseous inner ear structures and hearing in early marsupials and placentals   总被引:2,自引:0,他引:2  
Based on the internal anatomy of petrosal bones as shown in radiographs and scanning electron microscopy, the inner ear structures of Late Cretaceous marsupials and placentals (about 65 Myr ago) from the Bug Creek Anthills locality of Montana, USA, are described. The inner ears of Late Cretaceous marsupials and placentals are similar to each other in having the following tribosphenic therian synapomorphies: a fully coiled cochlea, primary and secondary osseous spiral laminae, the perilymphatic recess merging with the scala tympani of the cochlea, an aqueductus cochleae, a true fenestra cochleae, a radial pattern of the cochlear nerve and an elongate basilar membrane extending to the region between the fenestra vestibuli and fenestra cochleae. The inner ear structures of living therians differ from those of their Late Cretaceous relatives mainly in having a greater number of spiral turns of the cochlea and a longer basilar membrane. Functionally, a coiled cochlea not only permits the development of an elongate basilar membrane within a restricted space in the skull but also allows a centralized nerve system to innervate the elongate basilar membrane. Qualitative and quantitative analyses show that, with a typical therian inner ear, Late Cretaceous marsupials and placentals were probably capable of high-frequency hearing.  相似文献   

5.
The mandibular symphyseal joint is remarkably variable across major mammalian clades, ranging in adults from unfused (amphiarthrosis) to partially fused (synarthrosis) to completely ossified (synostosis). Experimental work conducted on primates suggests that greater ossification of the symphysis is a response to increased recruitment of the balancing-side (i.e. nonchewing side) jaw-adductor muscles during forceful unilateral biting and chewing, with increased fusion strengthening the symphysis against correspondingly elevated joint stresses. It is thus expected that species with diets composed primarily of foods that require high-magnitude bite forces and/or repetitive loading to process will be characterized by greater degrees of symphyseal ossification than species with relatively easy-to-process diets (i.e. food items typified by low toughness and/or low stiffness). However, comparative support for this idea is limited. We tested this hypothesis in four dietarily diverse mammalian clades characterized by variation in symphyseal fusion - the Strepsirrhini, Marsupialia, Feliformia, and Caniformia. We scored fusion in adult specimens of 292 species, assigned each to a dietary category based on literature accounts, and tested for an association between these two variables using Pagel's test for the correlated evolution of binary characters. Results indicate that greater fusion is associated with diets composed of resistant items in strepsirrhines, marsupials, and feliforms, providing some support for the hypothesis. However, no such relationship was detected in caniforms, suggesting that factors other than dietary mechanical properties influence symphyseal ossification. Future work should focus on such factors, as well as those that favour an unfused mandibular symphysis.  相似文献   

6.
Carpal evolution in diprotodontian marsupials   总被引:1,自引:0,他引:1  
Carpal anatomy in adults of 13 outgroup species and 50 diprotodontian species from all families except Tarsipedidae was examined, as well as a histological sectional series of a pouch young Vombatus ursinus . The results are discussed in the light of recent phylogenies, and functional aspects were considered to gain an understanding of carpal evolution in this diverse marsupial clade. Mapping of eight carpal characters on alternative diprotodontian phylogenies results in trees of similar lengths. Of the eight characters investigated, five characterize major diprotodontian clades and one offers an additional autapomorphy for the order. The occurrence of a prepollex varies across Diprotodontia, and for some species is polymorphic. Petauroids, Cercartetus and Trichosurus share the presence of a lunatum, a well-developed proximal process of the capitatum, a deep ulno-triquetral joint and a deep palmar process of the hamatum. Most macropodids are distinguished by the lack of a lunatum, lack of a proximal process of the capitatum, a short palmar process of the hamatum, a pointed ulno-triquetral articulation and a variably occurring groove in the scaphoid. The macropodines are set apart from the potoroines by their loss of a lunatum and a short palmar process of the hamatum. Two terrestrial clades, vombatiforms and macropodids, differ from the arboreal possums in similar aspects, indicating that carpal diversity might be related to function.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 369–384.  相似文献   

7.
Twelve petrosal and four nonpetrosal characters were coded for representatives of all 15 extant genera of Didelphidae and for 16 additional genera of marsupials representing all extant orders. Three basal metatherians were used as outgroup comparison. Histological sections of a subset of the data were examined. An intermediate position of the hiatus Fallopii supports the monophyly of Didelphidae. Several basicranial regions support different clades within the Didelphidae that recent molecular work has identified, including a sister group relationship of Caluromys and Caluromysiops , the monophyly of large opossums, a Lestodelphys-Thylamys clade, and a Lestodelphys-Thylamys-Gracilinanus-Marmosops clade. Glironia lacks petrosal and jaw synapomorphies of Caluromys and Caluromysiops. The transverse canal, a synapomorphy of the crown-group Marsupialia, opens as a single foramen anterior to the carotid foramen in most marsupials or as numerous foramina in the pterygoid fossa in diprotodontians. It is either intramural (most marsupials) or simply endocranial (most diprotodontians excluding koalas and wombats). Loss of a deep sulcus in the anterior pole of the promontorium for the internal carotid artery and a rostral tympanic process of the petrosal also characterize the groundplan of the crown group Marsupialia. Pouch-young wombats show a groove in the anterior pole of the petrosal for the internal carotid artery. The absence of a prootic canal foramen in the tympanic side of the petrosal of adults supports the monophyly of Australidelphia. Some pouch-young marsupials possess a prootic canal that is later lost in ontogeny. A rather flat promontorium and a crest running medio-distally in the middle of the promontorium characterize Macropodidae.  相似文献   

8.
The relationships of mammals   总被引:2,自引:0,他引:2  
A cladistic analysis generates alternative hypotheses regarding both the origin and the interrelationships of mammals to those most widely accepted at the present time. It is proposed that the tritylodontids are more closely related to mammals than is Probainognathus ; that the non-therian mammals do not constitute a monophyletic group; and that the monotremes are related to the modern therians, the ear ossicles among other characters having evolved only once. The multituberculates may be related to the monotremes.
It is argued that the current views are variously based on an overemphasis of superficial dental similarities, misinterpretation of the structure of the mammalianbraincaseand too readyacceptance of parallel evolution amongstthe groups concerned. The hypotheses proposed here are apparently much more parsimonious.  相似文献   

9.
Species that are dependant on, or adapted to, freshwater environments are found in almost all mammalian orders, and two orders, the Cetacea and the Sirenia, are strictly aquatic and include some freshwater-dependant species. Overall, the aquatic and freshwater-dependant species represent around 70 of the more than 1,200 living or recent genera of mammals, and occur in all continents except Antarctica. They include some of the most endangered species of mammals, and several have gone extinct or become critically endangered in recent decades. One of the main threats is habitat loss or degradation. This chapter provides an overview of the freshwater species within each order of mammals, their evolutionary history, their relations to humans and their conservation status. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A partial right humerus has been recovered from the Early Cretaceous (Albian) Eumeralla Formation at Dinosaur Cove in south-eastern Australia. General morphology, size and the presence of a single epicondylar foramen (the entepicondylar) suggest that the bone is from a mammal or an advanced therapsid reptile. The humerus is similar in size, shape and torsion to the equivalent bone of extant and late Neogene echidnas (Tachyglossidae) but, contrary to the situation in extant monotremes, in which the ulna and radius articulate with a single, largely bulbous condyle, it bears a shallow, pulley-shaped (i.e. trochlear-form) ulnar articulation that is confluent ventro-laterally with the bulbous radial condyle. This form of ulnar articulation distinguishes this bone from the humeri of most advanced therapsids and members of several major groups of Mesozoic mammals, which have a condylar ulnar articulation, but parallels the situation found in therian mammals and in some other lineages of Mesozoic mammals. As in extant monotremes the distal humerus is greatly expanded transversely and humeral torsion is strong. Transverse expansion of the distal humerus is evident in the humeri of the fossorial docodont Haldanodon, highly-fossorial talpids and some clearly fossorial dicynodont therapsids, but the fossil shows greatest overall similarity to extant monotremes and it is possible that the peculiar elbow joint of extant monotremes evolved from a condition approximating that of the fossil. On the basis of comparisons with Mesozoic and Cainozoic mammalian taxa in which humeral morphology is known, the Dinosaur Cove humerus is tentatively attributed to a monotreme. However, several apparently primitive features of the bone exclude the animal concerned from the extant families Tachyglossidae and Ornithorhynchidae and suggest that, if it is a monotreme, it is a stem-group monotreme. Whatever, the animal's true affinity, the gross morphology of its humerus indicates considerable capacity for rotation-thrust digging.  相似文献   

11.
A newly prepared palate of the moschorhinid therocephalian Promoschorhynchus platyrhinus from the Upper Permian region of South Africa was used for reconsidering the initial evolutionary development of the secondary palate of mammals. The very distinctive choanal crests are considered to be indicative of strong choanal folds that were probably already fused anteriorly. This gingival bridge probably served as the basis for the outgrowing bony processes of the hard palate that, in therapsids, developed independently at least three times. The soft palate ( velum palatinum ) is considered to be a remnant of the choanal folds that were muscularized from behind. It has been assumed that, in therapsids, a ventral portion of the medial pterygoid musculature shifted its insertion onto the ventral side of the pterygoid; this portion is supposed to have differentiated into the mm. tensor tympani and tensor veli palatini . Investigation of serial sections of extant marsupials confirm the view that the levator of the velum is derived from the upper constrictor of the pharynx. The choanal folds and the secondary palate are discussed within the wider framework of the evolutionary biology of mammalian forerunners. It is suggested that the formation of a sealed mouth cavity is not only related to the improved passage of air, but also to sucking in neonate hatchlings. The importance of the secondary palate of mammals to a number of resulting basic adaptations (dentition, olfactory system, etc.) of mammals is discussed.  相似文献   

12.
Abstract:  Bulk screening of Early Cretaceous (Barremian) strata of the Wessex Formation, exposed in sections on the south-west and south-east coasts of the Isle of Wight, southern England, has resulted in the recovery of mammal remains, the first to be obtained from Wealden Group strata since the early 1970s. The fauna comprises at least six taxa represented by isolated teeth and in addition, in the case of an as yet undescribed spalacotheriid, a partial dentary. One of the teeth, a distal premolar, is of unique tricuspid, single-rooted morphology and represents the first British record of the Gobiconodontidae. Discovery of a gobiconodontid mammal in Early Cretaceous deposits of Britain sheds further light on the palaeogeographical distribution of an apparently successful clade of Early Cretaceous mammals and together with the occurrence of a gobiconodontid in the earliest Cretaceous of North Africa calls into question recent hypotheses concerning the area of origin of the Gobiconodontidae and mechanisms of dispersal therefrom.  相似文献   

13.
14.
《Palaeoworld》2014,23(3-4):314-320
Four recently collected mammal specimens from the Upper Cretaceous (Santonian–?Campanian) Bostobe Formation in the northeastern Aral Sea Region, Kazakhstan are attributed to Asioryctitheria indet. (an edentulous dentary fragment) and the zhelestid Parazhelestes sp. cf. P. mynbulakensis (a maxillary fragment with a double-rooted canine, an M1, and a dentary fragment including m3). These new records double the known mammal fauna from this formation, which previously included the zhelestid Zhalmouzia bazhanovi and Zhelestidae indet. The taxonomic and ecological structure of the mammal assemblage from the Bostobe Formation can, on present evidence, be considered close to the other eutherian dominated Late Cretaceous mammal assemblages of Central Asia. This region is important in particular in the search for Late Cretaceous ancestors of crown-group eutherian mammal clades (Placentalia).  相似文献   

15.
The ossified Meckel's cartilage is described in detail from three adult individuals of two triconodont mammals, Repenomamus and Gobiconodon , which have been discovered in the Lower Cretaceous of Liaoning, China. A possible ossified Meckel's cartilage has also been recognized in the Early Cretaceous symmetrodont Zhangheotherium from Liaoning. The rod-like ossified Meckel's cartilage in Repenomamus bridges the dentary and the ear region of the cranium. Its shape and position are similar to those of Meckel's cartilage in prenatal and in some postnatal extant mammals. The ossified Meckel's cartilage may have functioned as an attachment site for the medial pterygoid muscle. These specimens provide direct evidence for the function of the internal groove which is commonly present in the dentary of early mammals and their relatives. The evidence weakens the hypothesis of multiple origins for the definitive mammalian middle ear. It supports the assumption that a persistent or ossified Meckel's cartilage has been present in adults of the common ancestor of mammals. The new evidence of Repenomamus does not support the model in which brain expansion and negative allometry of the auditory chain are primarily responsible for the detachment of ear ossicles in mammalian ontogeny and evolution. An alternative hypothesis is proposed which does not require brain expansion as the initial factor for the detachment of ear ossicles during mammalian evolution. © 2003 The Linnean Society of London. Zoological Journal of the Linnean Society , 2003, 138 , 431–448.  相似文献   

16.
The development of the scapula was studied in embryonic and postnatal specimens of Monodelphis domestica and perinatal specimens of Philander opossum, Caluromys philander, and Sminthopsis virginiae using histological sections and 3D reconstructions. Additionally, macerated skeletons of postnatal M. domestica were examined. This study focused on the detachment of the scapulocoracoid from the sternum and on the acquisition of a supraspinous fossa, a supraspinatus muscle, and a scapular spine, all these events associated with the origin of the therian shoulder girdle. In none of the specimens is there a continuity of the cartilaginous scapulocoracoid with the sternum, even though the structures are in close proximity, especially in S. virginiae. At birth, the first rib laterally presents a pronounced boss that probably contacts the humerus during certain movements. Only the acromial portion of the scapular spine, which originates from the anterior margin of the scapular blade, is preformed in cartilage. The other portion is formed by appositional bone ("Zuwachsknochen"), which expands from the perichondral ossification of the scapula into an intermuscular aponeurosis between the supra- and infraspinous muscles. This intermuscular aponeurosis inserts more or less in the middle of the lateral surface of the developing scapula. Thus, the floor of the supraspinous fossa is present from the beginning of scapular development, simultaneously with the infraspinous fossa. The homology of the therian spine with the anterior border of the sauropsid and monotreme scapula is questioned. We consider the dorsal portion (as opposed to the ventral or acromial portion) of the scapular spine a neomorphic structure of therian mammals.  相似文献   

17.
  • 1 Adaptive adjustments in offspring sex ratios in mammals have long been reported, but the conditions and mechanisms that prompt shifts in the proportion of sons and daughters born are still unclear.
  • 2 Empirical evidence indicates that offspring sex in mammals can be related to a diversity of environmental and maternal traits. However, the underlying assumptions regarding offspring and maternal fitness are rarely tested.
  • 3 Physiological mechanisms of maternal selection of offspring sex may occur at many stages during the prolonged maternal investment stage, and a pluralistic approach to studying mechanisms might prove fruitful.
  • 4 This review highlights the apparent frequency, in marsupial mammals, of sex ratio bias, which has largely been recorded as conforming to one of a few hypotheses.
  • 5 Marsupials are ideally suited to experiments involving cross‐fostering of offspring, which can allow rigorous tests of the fitness consequences of rearing one sex vs. the other. The reproductive biology of marsupials lends the group to detailed studies of the timing and physiological correlates of offspring sex biases.
  • 6 Many components of metatherian biology may prove advantageous in experimental studies of sex allocation in mammals, and together may provide a prosperous avenue for examining adaptive and mechanistic hypotheses in mammalian sex allocation.
  相似文献   

18.
19.
Scaling of mammalian long bones: small and large mammals compared   总被引:1,自引:0,他引:1  
  相似文献   

20.
Aim The goal of this paper is to examine the relationships between body size, biomic specialization and range size in the African large mammals, which are defined as all the African species corresponding to the orders Primates, Carnivora, Proboscidea, Perissodactyla, Hyracoidea, Tubulidentata, Artiodactyla and Pholidota. Location The study used the large mammal assemblage from Africa. Methods The degree of biomic specialization of African large mammals is investigated using the biomic specialization index (BSI) for each mammal species, based on the number of biomes it inhabits. Range size for each species is measured as the latitudinal extent of the geographical distribution of the species. We have analysed our data using both conventional cross‐species analyses and phylogenetically independent contrasts. Results There is a polygonal relationship between species biomic specialization and body size. While small and large species are biomic specialists, medium‐sized species are distributed along the whole range of biomic specialization. The latitudinal extent–body size relationship is approximately triangular. Small‐bodied species may have either large or small ranges, whereas large‐bodied ones have only large ranges. A positive correlation between latitudinal extent and biomic specialization is evident, although their relationship is better described as triangular. Main conclusions We found a polygonal relationship between species biomic specialization and body size, which agrees with previous arguments that small‐bodied species have more limited dispersal and, therefore, they may come to occupy a lesser proportion of their potential inhabitable biomes. On the other hand, large‐bodied species are constrained to inhabit biomes with a high productivity. A polygonal relationship between species latitudinal extent and body size in African large mammals agrees with previous studies of the relationship between range size and body size in other continents. The independent study of the macroecological pattern in biomic specialization highlights different factors that influence the body size–range size relationship. Although body size is usually implicated as a correlate of both specialization and geographical range size in large mammals, much of the variation in these variables cannot be attributed to size differences but to biome specific factors such as productivity, area, history, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号