首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.  相似文献   

5.
Huang YH  Wu CC  Chou CK  Huang CY 《PloS one》2011,6(5):e19718
Aurora-A, a centrosomal serine-threonine kinase, orchestrates several key aspects of cell division. However, the regulatory pathways for the protein stability and kinase activity of Aurora-A are still not completely understood. In this study, PUM2, an RNA-binding protein, is identified as a novel substrate and interacting protein of Aurora-A. Overexpression of the PUM2 mutant which fails to interact with Aurora-A, and depletion of PUM2 result in a decrease in the amount of Aurora-A. PUM2 physically binds to the D-box of Aurora-A, which is recognized by APC/C(Cdh1). Overexpression of PUM2 prevents ubiquitination and enhances the protein stability of Aurora-A, suggesting that PUM2 protects Aurora-A from APC/C(Cdh1)-mediated degradation. Moreover, association of PUM2 with Aurora-A not only makes Aurora-A more stable but also enhances the kinase activity of Aurora-A. Our study suggests that PUM2 plays two different but important roles during cell cycle progression. In interphase, PUM2 localizes in cytoplasm and plays as translational repressor through its RNA binding domain. However, in mitosis, PUM2 physically associates with Aurora-A to ensure enough active Aurora-A at centrosomes for mitotic entry. This is the first time to reveal the moonlight role of PUM2 in mitosis.  相似文献   

6.
The role of cell division in the expression of muscle actin and its relationship to acetylcholinesterase (AChE) development was examined in cleavage-arrested embryos of the ascidian Styela. Muscle actin expression was detected by two-dimensional gel electrophoresis of radioactively labelled proteins and by in situ hybridization with a cDNA probe, whereas AChE activity was assayed by enzyme histochemistry. In the majority of cases, muscle actin expression was first detected in embryos arrested after the 16-cell stage. Some embryos showed muscle actin expression after arrest at the 8-cell stage, however, muscle actin mRNA did not accumulate in embryos arrested at earlier cleavages. The cells that expressed muscle actin in 8- to 64-cell cleavage-arrested embryos belonged to the primary muscle lineage; secondary muscle cell precursors did not express muscle actin. Zygotic muscle actin mRNA appeared to accumulate with myoplasmic pigment granules in the perinuclear region of cleavage-arrested embryos, suggesting that the myoplasm may have a role in the organization of muscle cells. In contrast to muscle actin, AChE was detected in a small proportion of embryos treated with cytochalasin as early as the 1- or 2-cell stage, and most embryos treated with cytochalasin at later cleavages expressed this enzyme in some of their cells. Most primary muscle lineage cells expressed both muscle actin mRNA and AChE, however, some cells expressed only muscle actin mRNA or AChE. The results suggest that at least three cleavages are required for muscle actin expression and that muscle actin and AChE expression can be uncoupled in cleavage-arrested embryos.  相似文献   

7.
8.
The collagen-tailed form of acetylcholinesterase (ColQ-AChE) is the major if not unique form of the enzyme associated with the neuromuscular junction (NMJ). This enzyme form consists of catalytic and non-catalytic subunits encoded by separate genes, assembled as three enzymatic tetramers attached to the three-stranded collagen-like tail (ColQ). This synaptic form of the enzyme is tightly attached to the basal lamina associated with the glycosaminoglycan perlecan. Fasciculin-2 is a snake toxin that binds tightly to AChE. Localization of junctional AChE on frozen sections of muscle with fluorescent Fasciculin-2 shows that the labeled toxin dissociates with a half-life of about 36h. The fluorescent toxin can subsequently be taken up by the muscle fibers by endocytosis giving the appearance of enzyme recycling. Newly synthesized AChE molecules undergo a lengthy series of processing events before final transport to the cell surface and association with the synaptic basal lamina. Following co-translational glycosylation the catalytic subunit polypeptide chain interacts with several molecular chaperones, glycosidases and glycosyltransferases to produce a catalytically active enzyme that can subsequently bind to one of two non-catalytic subunits. These molecular chaperones can be rate limiting steps in the assembly process. Treatment of muscle cells with a synthetic peptide containing the PRAD attachment sequence and a KDEL retention signal results in a large increase in assembled and exportable AChE, providing an additional level of post-translational control. Finally, we have found that Pumilio2, a member of the PUF family of RNA-binding proteins, is highly concentrated at the vertebrate neuromuscular junction where it plays an important role in regulating AChE translation through binding to a highly conserved NANOS response element in the 3'-UTR. Together, these studies define several new levels of AChE regulation in electrically excitable cells.  相似文献   

9.
10.
11.
Drosophila Sex-lethal (dSXL)-mediated translational repression of male-specific lethal 2 (msl-2) mRNA is essential for X-chromosome dosage compensation. Binding of dSXL to specific sites in both untranslated regions of msl-2 mRNA is necessary for inhibition of translation initiation. We describe the organization of dSXL as a translational regulator and show that the RNA binding and translational repressor functions are contained within the two RRM domains and a C-terminal heptapeptide extension. The repressor function is dormant unless dSXL binds to msl-2 mRNA with its own RRMs, because dSXL tethering via a heterologous RNA-binding peptide does not elicit translational inhibition. We reveal proteins that crosslink to the msl-2 3' untranslated region (3'UTR) and co-immunoprecipitate with dSXL in a fashion that requires its intact repressor domain and correlates with translational regulation. Translation competition and UV-crosslink experiments show that the 3'UTR msl-2 sequences adjacent to dSXL-binding sites are necessary to recruit titratable co-repressors. Our data support a model where dSXL binding to the 3'UTR of msl-2 mRNA activates the translational repressor domain, thereby enabling it to recruit co-repressors in a specific fashion.  相似文献   

12.
Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3'' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Binding of PUM to the NRE is thought to target hb(mat) mRNA for repression. Here, we show the RNA-binding domain of PUM to be an evolutionarily conserved, 334-amino acid region at the carboxy-terminus of the approximately 158-kDa PUM protein. This contiguous region of PUM retains the RNA-binding specificity of full-length PUM protein. Proteins with sequences homologous to the PUM RNA-binding domain are found in animals, plants, and fungi. The high degree of sequence conservation of the PUM RNA-binding domain in other far-flung species suggests that the domain is an ancient protein motif, and we show that conservation of sequence reflects conservation of function: that is, the homologous region from a human protein binds RNA with sequence specificity related to but distinct from Drosophila PUM.  相似文献   

13.
14.
15.
16.
17.
18.
Germ cell development is complex; it encompasses specification of germ cell fate, mitotic replication of early germ cell populations, and meiotic and postmeiotic development. Meiosis alone may require several hundred genes, including homologs of the BOULE (BOL) and PUMILIO (PUM) gene families. Both BOL and PUM homologs encode germ cell specific RNA binding proteins in diverse organisms where they are required for germ cell development. Here, we demonstrate that human BOL forms homodimers and is able to interact with a PUMILIO homolog, PUM2. We mapped the domain of BOL that is required for dimerization and for interaction with PUM2. We also show that BOL and PUM2 can form a complex on a subset of PUM2 RNA targets that is distinct from targets bound by PUM2 and another deleted in azoospermia (DAZ) family member, DAZ-like (DAZL). This suggests that RNA sequences bound by PUM2 may be determined by protein interactions. This data also suggests that although the BOL, DAZ, and DAZL proteins are all members of the same gene family, they may function in distinct molecular complexes during human germ cell development.  相似文献   

19.
Formation of the synaptic basal lamina at vertebrate neuromuscular junction involves the accumulation of numerous specialized extracellular matrix molecules including a specific form of acetylcholinesterase (AChE), the collagenic-tailed form. The mechanisms responsible for its localization at sites of nerve- muscle contact are not well understood. To understand synaptic AChE localization, we synthesized a fluorescent conjugate of fasciculin 2, a snake alpha-neurotoxin that tightly binds to the catalytic subunit. Prelabeling AChE on the surface of Xenopus muscle cells revealed that preexisting AChE molecules could be recruited to form clusters that colocalize with acetylcholine receptors at sites of nerve-muscle contact. Likewise, purified avian AChE with collagen-like tail, when transplanted to Xenopus muscle cells before the addition of nerves, also accumulated at sites of nerve-muscle contact. Using exogenous avian AChE as a marker, we show that the collagenic-tailed form of the enzyme binds to the heparan-sulfate proteoglycan perlecan, which in turn binds to the dystroglycan complex through alpha-dystroglycan. Therefore, the dystroglycan-perlecan complex serves as a cell surface acceptor for AChE, enabling it to be clustered at the synapse by lateral migration within the plane of the membrane. A similar mechanism may underlie the initial formation of all specialized basal lamina interposed between other cell types.  相似文献   

20.
The muscle isoform of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号