首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy.  相似文献   

2.
In newborn mice, PLRP2 is essential for fat digestion. In human infants, the role of PLRP2 in fat digestion is unclear, as it has poor activity against long-chain triglycerides in vitro. Also, many infants carry a genetic polymorphism resulting in a truncated protein, PLRP2 W340X, which may impact function significantly. We re-examined the properties of recombinant human PLRP2 and studied the impact of W340X mutation on its function. In the presence of bile salt micelles and colipase, human PLRP2 hydrolyzed long-chain tri-, di-, and monoglycerides. It hydrolyzed triolein at a level much lower than that of pancreatic triglyceride lipase, but close to that of carboxyl ester lipase, after a long lag phase, which could be eliminated by the addition of oleic acids. Human PLRP2 W340X was poorly secreted and largely retained inside the cell. The retention of the mutant protein triggered endoplasmic reticulum stress and unfolded protein responses. Our results show that earlier studies underestimated human PLRP2 activity against triolein by employing suboptimal assay conditions. In vivo, dietary fat emulsions contain fatty acids as a result of the action of gastric lipase. Consequently, PLRP2 can contribute to fat digestion during early infancy. Furthermore, infants with homozygous W340X alleles will not secrete functional PLRP2 and may have inefficient dietary fat digestion, particularly when breastfeeding is unavailable. Additionally, the aberrant folding of W340X mutant may cause chronic cellular stress and increase susceptibility of pancreatic exocrine cells to other metabolic stressors.  相似文献   

3.
Intragastric lipolysis may be particularly important for the digestion of milk lipid since milk fat globules are resistant to pancreatic lipase without prior disruption; milk bile salt stimulated lipase (BSSL) may supplement further intestinal hydrolysis. Previous information on gastric lipolysis has been based primarily on in vitro studies using artificial lipid emulsions containing a single component fatty acid and have focused on the preferential release of medium-chain fatty acids. The actual contribution of these enzymes to overall fat digestion in vivo on natural substrates has rarely been studied, however. The neonatal dog is an excellent model in the study of lipid digestion because, like the human, milk lipids are high in long-chain unsaturated fatty acids, milk contains BSSL and gastric lipase is the predominant lipolytic enzyme acting in the stomach. We used a combination of in vivo studies with in vitro incubations to investigate digestion of milk lipid by gastric and milk (BSSL) lipases in the suckling dog. In the first 4 weeks postpartum, 14-41% and 42-60% of milk triacylglycerol was hydrolyzed to primarily diacylglycerol and free fatty acid (FFA) in the first 30 and 60 min in the stomach, respectively. Milk lipid contained high levels (63%) of long-chain unsaturated fatty acids, which were preferentially released as FFA during in vivo gastric lipolysis, consistent with the actions and stereospecificity of gastric lipase. While levels of hydrolysis in gastric aspirates were significantly different (by age and time in stomach) at the start of in vitro studies, total hydrolysis in all incubation systems plateaued at about 65%, suggesting product inhibition by the long-chain FFA, but to a much lesser degree than previously expected from in vitro studies. The magnitude of in vivo intragastric lipolysis was 3- to 6-times greater than that predicted by in vitro assays using either milk lipid or labeled emulsion as substrate, respectively. Prior exposure to intragastric lipolysis resulted in 30% hydrolysis by BSSL compared to 5% hydrolysis without prior exposure. We suggest that previous in vitro studies have largely underestimated the actual degree of intragastric lipolysis that can occur and its activity on long-chain fatty acids; this study indicates the importance of the combined mechanisms of gastric lipase and BSSL to fat digestion in the suckling neonate.  相似文献   

4.
Although structurally similar to pancreatic lipase (PL), the key enzyme of intestinal fat digestion, pancreatic lipase-related protein type 2 (PLRP2) differs from PL in certain functional properties. Notably, PLRP2 has a broader substrate specificity than PL, and unlike that of PL, its activity is not restored by colipase in the presence of bile salts. In the studies presented here, the activation mechanism of horse PLRP2 was studied through active site-directed inhibition experiments, and the results demonstrate fundamental differences with that of PL. The opening of the horse PLRP2 flap occurs as soon as bile salt monomers are present, is accelerated in the presence of micelles, and does not require the presence of colipase. Moreover, in contrast to PL, horse PLRP2 is able to directly interact with a bile salt micelle to form an active binary complex, without the micelle being presented by colipase, as evidenced by molecular sieving experiments. These findings, together with the sensitivity of the horse PLRP2 flap to partial proteolysis, are indicative of a higher flexibility of the flap of horse PLRP2 relative to PL. From these results, it can be concluded that PLRP2 can adopt an active conformation in the intestine, which could be important for the further understanding of the physiological role of PLRP2. Finally, this work emphasizes the essential role of colipase in lipase catalysis at the lipid-water interface in the presence of bile.  相似文献   

5.
IL‐4 induces a lipase, pancreatic lipase related protein 2 (PLRP2), in cytotoxic T lymphocytes (CTLs). Because PLRP2 in semen can mediate lipid‐dependent toxicity to sperm, we questioned whether CTL‐derived PLRP2 could support similar cytotoxicity toward tumor cells. Recombinant PLRP2 was toxic to P815 tumor cells in 48 h when lipid and another protein, colipase, were present. However, PLRP2‐positive CTLs (induced with many lots of IL‐4) were unable to mediate lipid‐dependent cytotoxicity. Notably, CTLs induced with only one lot of IL‐4 had lipid‐dependent cytotoxicity. The exceptional lot of IL‐4 was effective in multiple experiments at inducing lipid‐dependent cytotoxicity. The lipid‐dependent cytotoxicity it induced was determined to be perforin‐independent. CTLs induced with IL‐4 that was unable to induce lipid‐dependent cytotoxicity had mRNA for PLRP2 but not mRNA for colipase. Therefore, we added exogenous colipase to the CTL assays but still cytotoxicity was unchanged. We conclude (1) that lipid‐dependent cytotoxicity, promoted by the lipase PLRP2 and colipase, will kill tumor cells and (2) that more than PLRP2 alone is required for lipid‐dependent cytotoxicity mediated by CTLs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Labrasol is a lipid-based self-emulsifying excipient used in the preparation of lipophilic drugs intended for oral delivery. It is mainly composed of PEG esters and glycerides with medium acyl chains, which are potential substrates for digestive lipases. The hydrolysis of Labrasol by porcine pancreatic extracts, human pancreatic juice and several purified digestive lipases was investigated in the present study. Classical human pancreatic lipase (HPL) and porcine pancreatic lipase, which are the main lipases involved in the digestion of dietary triglycerides, showed very low levels of activity on the entire Labrasol excipient as well as on separated fractions of glycerides and PEG esters. On the other hand, gastric lipase, pancreatic lipase-related protein 2 (PLRP2) and carboxyl ester hydrolase (CEH) showed high specific activities on Labrasol. These lipases were found to hydrolyze the main components of Labrasol (PEG esters and monoglycerides) used as individual substrates, whereas these esters were found to be poor substrates for HPL. The lipolytic activity of pancreatic extracts and human pancreatic juice on Labrasol(R) is therefore mainly due to the combined action of CEH and PLRP2. These two pancreatic enzymes, together with gastric lipase, are probably the main enzymes involved in the in vivo lipolysis of Labrasol taken orally.  相似文献   

7.
Bile salt stimulated lipase (BSSL), a lipolytic enzyme secreted with pancreatic juice and with human milk, is in concert with colipase-dependent pancreatic lipase, important for the intestinal digestion of dietary lipids. BSSL may also facilitate uptake of free cholesterol from the intestinal lumen, while colipase-dependent lipase has a similar role for fatty acids. According to this theory, the two lipases bind to the intestinal mucosa via a common heparin-involving receptor. In the present study, binding of the two lipases to heparin was explored in vitro using purified human lipases and heparin molecules varying in both chain length and charge density. Native, but not denatured, BSSL bound avidly to heparin and several of the heparin variants. In contrast, at physiologic salt concentration, colipase-dependent lipase did not bind to heparin. Thus, our data do not support the view that the two lipases share a common intestinal heparin-like receptor. Hence, it seems unlikely that such binding could be of physiologic relevance for colipase-dependent lipase, although for BSSL the data are supportive.  相似文献   

8.
Pancreatic triglyceride lipase (PTL) and its cofactor, colipase, are required for efficient dietary triglyceride digestion. In addition to PTL, pancreatic acinar cells synthesize two pancreatic lipase-related proteins (PLRP1 and PLRP2), which have a high degree of sequence and structural homology with PTL. The lipase activity of PLRP2 has been confirmed, whereas no known triglyceride lipase activity has been detected with PLRP1 up to now. To explore the biological functions of PLRP1 in vivo, we generated Plrp1 knockout (KO) mice in our laboratory. Here we show that the Plrp1 KO mice displayed mature-onset obesity with increased fat mass, impaired glucose clearance and the resultant insulin resistance. When fed on high-fat (HF) diet, the Plrp1 KO mice exhibited an increased weight gain, fat mass and severe insulin resistance compared with wild-type mice. Pancreatic juice extracted from Plrp1 KO mice had greater ability to hydrolyze triglyceride than that from the wild-type littermates. We propose that PLRP1 may function as a metabolic inhibitor in vivo of PLT-colipase-mediated dietary triglyceride digestion and provides potential anti-obesity targets for developing new drugs.  相似文献   

9.
The triglyceride lipases of the pancreas   总被引:7,自引:0,他引:7  
Pancreatic triglyceride lipase (PTL) and its protein cofactor, colipase, are required for efficient dietary triglyceride digestion. In addition to PTL, pancreatic acinar cells synthesize two pancreatic lipase related proteins (PLRP1 and PLRP2), which have a high degree of sequence and structural homology with PTL. PLRP1 has no known activity. PTL and PLRP2 differ in substrate specificity, behavior in bile salts and dependence on colipase. Each protein has a globular amino-terminal (N-terminal) domain, which contains the catalytic site for PTL and PLRP2, and a beta-sandwich carboxyl-terminal (C-terminal) domain, which includes the predominant colipase-binding site for PTL. Inactive and active conformations of PTL have been described. They differ in the position of a surface loop, the lid domain, and of the beta5-loop. In the inactive conformation, the lid covers the active site and, upon activation by bile salt micelles and colipase or by lipid-water interfaces, the lid moves dramatically to open and configure the active site. After the lid movement, PTL and colipase create a large hydrophobic plateau that can interact with the lipid-water interface. A hydrophobic surface loop in the C-terminal domain, the beta5' loop, may also contribute to the interfacial-binding domain of the PTL-colipase complex.  相似文献   

10.
The physiological role of the two lipase-related proteins, PLRP1 and PLRP2, still remains obscure although some propositions have been made concerning PLRP2. In this paper, we report the presence of high amounts of PLRP2 in adult horse pancreas whereas no PLRP1 could be detected. As well, a non-parallel expression of PLRP2 and PLRP1 is observed in adult cat and dog, since no PLRP2 could be detected in these two species. In adult ox, neither PLRP2 nor PLRP1 could be found. These findings are in favor of a different regulation of the expression of the genes encoding pancreatic lipase and the related proteins according to the species. The cDNA encoding horse PLRP2 has been cloned and the protein expressed in insect cells. Both native and recombinant PLRP2 display the same catalytic properties. They possess a moderate lipase activity, inhibited by bile salts and not restored by colipase. Interestingly, they differ from PLRP2 from other species by their very low phospholipase activity indicating that PLRP2 could not be considered as a general phospholipase as previously postulated. This work highlights the variability of the properties of PLRP2 and rises the question of the physiological function of this protein in adult according to the species.  相似文献   

11.
Although structurally similar, classic pancreatic lipase (PL) and pancreatic lipase-related protein (PLRP)2, expressed in the pancreas of several species, differ in substrate specificity, sensitivity to bile salts and colipase dependence. In order to investigate the role of the two domains of PLRP2 in the function of the protein, two chimeric proteins were designed by swapping the N and C structural domains between the horse PL (Nc and Cc domains) and the horse PLRP2 (N2 and C2 domains). NcC2 and N2Cc proteins were expressed in insect cells, purified by one-step chromatography, and characterized. NcC2 displays the same specific activity as PL, whereas N2Cc has the same as that PLRP2. In contrast to N2Cc, NcC2 is highly sensitive to interfacial denaturation. The lipolytic activity of both chimeric proteins is inhibited by bile salts and is not restored by colipase. Only N2Cc is found to be a strong inhibitor of PL activity, due to competition for colipase binding. Active site-directed inhibition experiments demonstrate that activation of N2Cc occurs in the presence of bile salt and does not require colipase, as does PLRP2. The inability of PLRP2 to form a high-affinity complex with colipase is only due to the C-terminal domain. Indeed, the N-terminal domain can interact with the colipase. PLRP2 properties such as substrate selectivity, specific activity, bile salt-dependent activation and interfacial stability depend on the nature of the N-terminal domain.  相似文献   

12.
Genetically engineered mice have been employed to understand the role of lipases in dietary fat digestion with the expectation that the results can be extrapolated to humans. However, little is known about the properties of mouse pancreatic triglyceride lipase (mPTL) and pancreatic lipase-related protein-2 (mPLRP2). In this study, both lipases were expressed in Pichia Pastoris GS115, purified to near homogeneity, and their properties were characterized. Mouse PTL displayed the kinetics typical of PTL from other species. Like mPTL, mPLRP2 exhibited strong activity against various triglycerides. In contrast to mPTL, mPLRP2 was not inhibited by increasing bile salt concentration. Colipase stimulated mPLRP2 activity 2- to 4-fold. Additionally, mPTL absolutely required colipase for absorption to a lipid interface, whereas mPLRP2 absorbed fully without colipase. mPLRP2 had full activity in the presence of BSA, whereas BSA completely inhibited mPTL unless colipase was present. All of these properties of mPLRP2 differ from the properties of human PLRP2 (hPLRP2). Furthermore, mPLRP2 appears capable of compensating for mPTL deficiency. These findings suggest that the molecular mechanisms of dietary fat digestion may be different in humans and mice. Thus, extrapolation of dietary fat digestion in mice to humans should be done with care.  相似文献   

13.
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the most abundant lipids in nature, mainly as important components of plant leaves and chloroplast membranes. Pancreatic lipase-related protein 2 (PLRP2) was previously found to express galactolipase activity, and it is assumed to be the main enzyme involved in the digestion of these common vegetable lipids in the gastrointestinal tract. Most of the previous in vitro studies were however performed with medium chain synthetic galactolipids as substrates. It was shown here that recombinant guinea pig (Cavia porcellus) as well as human PLRP2 hydrolyzed at high rates natural DGDG and MGDG extracted from spinach leaves. Their specific activities were estimated by combining the pH-stat technique, thin layer chromatography coupled to scanning densitometry and gas chromatography. The optimum assay conditions for hydrolysis of these natural long chain galactolipids were investigated and the optimum bile salt to substrate ratio was found to be different from that established with synthetic medium chains MGDG and DGDG. Nevertheless the length of acyl chains and the nature of the galactosyl polar head of the galactolipid did not have major effects on the specific activities of PLRP2, which were found to be very high on both medium chain [1786 ± 100 to 5420 ± 85 U/mg] and long chain [1756 ± 208 to 4167 ± 167 U/mg] galactolipids. Fatty acid composition analysis of natural MGDG, DGDG and their lipolysis products revealed that PLRP2 only hydrolyzed one ester bond at the sn-1 position of galactolipids. PLRP2 might be used to produce lipid and free fatty acid fractions enriched in either 16:3 n − 3 or 18:3 n − 3 fatty acids, both found at high levels in galactolipids.  相似文献   

14.
Bile salt-stimulated lipase is a milk enzyme unique to the higher primates. Its molecular and kinetic characteristics differ greatly from other lipolytic enzymes; e.g., pancreatic lipase and lipoprotein lipase. It has a much higher app. Mr, 310 000 on gel filtration and 100 000 after denaturation. It requires primary bile salts for optimal activity and bile salts also protect the enzyme from proteolytic and heat inactivation. It may, due to its low substrate specificity, contribute to the utilization of a variety of milk lipids. Since it lacks positional specificity, digestion of milk triglycerides should be complete, which may explain why fat absorption is more efficient in breast-fed than in formula-fed infants.  相似文献   

15.
The major sources of vitamin A in the human diet are retinyl esters (mainly retinyl palmitate) and provitamin A carotenoids. It has been shown that classical pancreatic lipase (PL) is involved in the luminal hydrolysis of retinyl palmitate (RP), but it is not known whether pancreatic lipase-related proteins 1 (PLRP1) and 2 (PLRP2), two other lipases recovered in the human pancreatic juice, are also involved. The aim of this study was to assess whether RP acts a substrate for these lipase-related proteins. Pure horse PL, horse PLRP2 and dog PLRP1 were incubated with RP solubilized in its physiological vehicles, i.e., triglyceride-rich lipid droplets, mixed micelles and vesicles. High performance liquid chromatography (HPLC) was used to assess RP hydrolysis by the free retinol released in the incubation medium. Incubation of RP-containing emulsions with horse PL and colipase resulted in RP hydrolysis (0.051+/-0.01 micromol/min/mg). This hydrolysis was abolished when colipase was not added to the medium. PLRP2 and PLRP1 were unable to hydrolyze RP solubilized in emulsions, regardless of whether colipase was added to the medium. PL hydrolyzed RP solubilized in mixed micelles as well (0.074+/-0.014 micromol/min/mg). Again, this hydrolysis was abolished in the absence of colipase. PLRP2 hydrolyzed RP solubilized in micelles but less efficiently than PL (0.023+/-0.005 micromol/min/mg). Colipase had no effect on this hydrolysis. PLRP1 was unable to hydrolyze RP solubilized in micelles, regardless of whether colipase was present or absent. Both PL and PLRP2 hydrolyzed RP solubilized in a vesicle rich-solution, and a synergic phenomenon between the two lipases was enlighten. Taken together, these results show that (1) PL hydrolyzes RP whether RP is solubilized in emulsions or in mixed micelles, (2) PLRP2 hydrolyzes RP only when RP is solubilized in mixed micelles, and (3) PLRP1 is unable to hydrolyze RP regardless of whether RP is solubilized in emulsions or in mixed micelles.  相似文献   

16.
The expression of recombinant human bile salt-stimulated lipase (bssl) was targeted to the lactating mammary gland of transgenic mice. Expression of recombinant genes comprisingbssl cDNA, or alternatively genomicbssl DNA, under control of regulatory elements derived from the murine whey acidic protein (wap) gene was achieved and evaluated. Constructs containing genomicbssl sequences mediated high levels (0.5–1, mg ml–1) of recombinant human BSSL in the milk. The recombinant BSSL produced was purified, biochemically characterized and compared to native BSSL and recombinant BSSL produced in mouse C127 and hamster CHO cells. Recombinant BSSL derived from transgenic mice showed a different migration and distribution after SDS-PAGE electrophoresis, lower apparent molecular mass on size-exclusion chromatography and no detectable interactions with a panel of lectins. These results indicate a significantly lower degree ofO-glycosylation of recombinant BSSL in milk from transgenic mice than was found for the native enzyme or recombinant CHO- or C127 cell-produced BSSL. Despite these differences, mouse-milk-derived recombinant BSSL exhibited similar lipase activity, the same, stability to low pH and similar sensitivity to elevated temperatures as the native enzyme. The observation that mouse-C127-cell-produced recombinant BSSL is heavilyO-glycosylated makes species-related restrictions less attractive as an explanation for the reducedO-glycosylation.  相似文献   

17.
18.
Adipose TG lipase (ATGL) catalyzes the rate-limiting step in TG hydrolysis in most tissues. We have shown that hepatic ATGL preferentially channels hydrolyzed FAs to β-oxidation and induces PPAR-α signaling. Previous studies have suggested that liver FA binding protein (L-FABP) transports FAs from lipid droplets to the nucleus for ligand delivery and to the mitochondria for β-oxidation. To determine if L-FABP is involved in ATGL-mediated FA channeling, we used adenovirus-mediated suppression or overexpression of hepatic ATGL in either WT or L-FABP KO mice. Hepatic ATGL knockdown increased liver weight and TG content of overnight fasted mice regardless of genotype. L-FABP deletion did not impair the effects of ATGL overexpression on the oxidation of hydrolyzed FAs in primary hepatocyte cultures or on serum β-hydroxybutyrate concentrations in vivo. Moreover, L-FABP deletion did not influence the effects of ATGL knockdown or overexpression on PPAR-α target gene expression. Taken together, we conclude that L-FABP is not required to channel ATGL-hydrolyzed FAs to mitochondria for β-oxidation or the nucleus for PPAR-α regulation.  相似文献   

19.
The hydrolysis of polyenoic fatty acid ester bonds with pure human colipase-dependent lipase, with carboxyl ester lipase (CEL) and with these enzymes in combination was studied, using [3H]arachidonic- and [14C]linoleic acid-labelled rat chylomicrons as a model substrate. During the hydrolysis with colipase-dependent lipase, the amount of 3H appearing in 1,2-X-diacylglycerol (DG) markedly exceeded that of 14C. When CEL was added in addition this [3H]DG was efficiently hydrolyzed. CEL alone hydrolyzed the triacylglycerol (TG) at a low rate. The hydrolysis pattern with human duodenal content was similar to that seen with colipase-dependent lipase and CEL in combination. Increasing the concentration of taurodeoxycholate (TDC) and taurocholate (TC) or of TDC alone stimulated the hydrolysis of [3H]- and [14C]TG, but increased the accumulation of labelled DG that could act as substrate for CEL. It is suggested that very-long-chain polyenoic fatty acids of DG formed during the action of the colipase-dependent lipase on TG containing these fatty acids may be a physiological substrate for CEL.  相似文献   

20.
Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous “beige,” and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号