首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN–heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808–3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 ± 5 and 35 ± 3 s−1, respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Li W  Fan W  Elmore BO  Feng C 《FEBS letters》2011,585(16):2622-2626
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN construct were determined by laser flash photolysis as a function of solution viscosity (1.0-3.0 cP). In the presence of ethylene glycol or sucrose, an appreciable decrease in the IET rate constant value was observed with an increase in the solution viscosity. The IET rate constant is inversely proportional to the viscosity for both viscosogens. This demonstrates that viscosity, and not other properties of the added viscosogens, causes the dependence of IET rates on the solvent concentration. The IET kinetics results indicate that the FMN-heme IET in iNOS is gated by a large conformational change of the FMN domain. The kinetics and NOS flavin fluorescence results together indicate that the docked FMN/heme state is populated transiently.  相似文献   

3.
Intersubunit intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation, which serves as the input state for reduction of FMN by electrons from NADPH and flavin adenine dinucleotide (FAD) in the reductase domain. To favor the formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct of rat neuronal NOS (nNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of IET between the FMN and heme domains in the nNOS oxyFMN construct in the presence and absence of added calmodulin (CaM) were directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single-domain heme oxygenase constructs. The IET rate constant in the presence of CaM (262 s(-)(1)) was increased approximately 10-fold compared to that in the absence of CaM (22 s(-)(1)). The effect of CaM on interdomain interactions was further evidenced by electron paramagnetic resonance (EPR) spectra. This work provides the first direct evidence of the CaM control of electron transfer (ET) between FMN and heme domains through facilitation of the FMN/heme interactions in the output state. Therefore, CaM controls IET between heme and FMN domains by a conformational gated mechanism. This is essential in coupling ET in the reductase domain in NOS with NO synthesis in the oxygenase domain.  相似文献   

4.
Li W  Chen L  Fan W  Feng C 《FEBS letters》2012,586(2):159-162
The FMN-heme interdomain (intraprotein) electron transfer (IET) kinetics in full length and oxygenase/FMN (oxyFMN) construct of human iNOS were determined by laser flash photolysis over the temperature range from 283 to 304K. An appreciable increase in the rate constant value was observed with an increase in the temperature. Our previous viscosity study indicated that the IET process is conformationally gated, and Eyring equation was thus used to analyze the temperature dependence data. The obtained magnitude of activation entropy for the IET in the oxyFMN construct is only one-fifth of that for the holoenzyme. This indicates that the FMN domain in the holoenzyme needs to sample more conformations before the IET takes place, and that the FMN domain in the oxyFMN construct is better poised for efficient IET.  相似文献   

5.
生物体内NO是在一氧化氮合酶(mitric oxide synthase,NOS)催化下生成的,NOS的结构包括C端还原酶域和N端加氧酶域。还原酶域中的FMN结合结构域既可接受来自NADPH-FAD结构域的电子,又可作为提供电子的供体,在调控催化过程中的电子传递方面发挥着重要作用。主要从FMN结合结构域的构象平衡及其对不同亚型NOS的动力学差异的贡献、FMN结合结构域自身的电荷性质以及NOS中其他结构域对FMN结构域的功能调控三个方面进行了论述,以期揭示NOS独特的电子传递催化机制。  相似文献   

6.
Dunford AJ  Rigby SE  Hay S  Munro AW  Scrutton NS 《Biochemistry》2007,46(17):5018-5029
Multiple solution-state techniques have been employed in investigating the nature and control of electron transfer in the context of the proposed "domain shuffle hypothesis" for intraprotein electron transfer inferred from the crystal structure of the nitric oxide synthase reductase domain. NADPH analogues and fragments have been used to map those regions of this substrate that are important in eliciting a conformational change, observed in both the fluorescence emission of the flavin cofactors of the enzyme and the EPR spectra of the FMN flavosemiquinone state. EPR and UV-visible potentiometric methods have demonstrated a substantial calmodulin-dependent perturbation in the midpoint reduction potentials of the redox couples of both flavin cofactors, in contrast to a previous report [Noble, M. A., et al. (1999) Biochemistry 38, 16413-16418]. These studies support a model in which FMN domain mobility, triggered by Ca2+-calmodulin binding and antagonized by substrate binding, facilitates electron transfer in nitric oxide synthase through conformational change and effects a major change in the midpoint reduction potentials of the flavin redox couples. These results are discussed in light of the recent crystal structure of the NADPH-locked reductase domain.  相似文献   

7.
Nitric oxide synthase (NOS) has an oxygenase domain with a thiol-coordinated heme active side similar to cytochrome P450. In contrast to cytochrome P450, however, conserved aromatic amino acids are situated in the heme proximal side of NOS. For example, in endothelial NOS (eNOS), the indole-ring nitrogen of Trp180 hydrogen-binds to the thiol of Cys186, the internal axial ligand to the heme. And, the aromatic side chain of Trp192 forms a bridge between this residue and the protein. Trp180 and Trp192 of eNOS correspond to Trp409 and Trp421 of neuronal NOS (nNOS), respectively. In order to understand the roles of the aromatic amino acids in catalysis, we generated Trp409His, Trp409Leu, Trp421His and Trp421Leu mutants of nNOS and determined their catalytic parameters. The Trp409Leu mutant was very poorly expressed in E. coli and was easily denatured during purification procedures. The NO formation activities of the Trp409His and Trp421Leu mutants were 11 and 25 micromol/min per micromol heme, respectively, and are lower than that (44 micromol/min per micromol heme) of the wild type. The activity (46 micromol/min per micromol heme) of the Trp421His mutant was comparable to that of the wild-type enzyme. However, NADPH oxidation rates of Trp421His (230 micromol/min per micromol heme) and Trp421Leu (104 micromol/min per microol heme) in the presence of L-Arg were much larger than those observed for the wild type (65 micromol/min per micromol heme) and the Trp409His mutant (43 micromol/min per micromol heme). The cytochrome c reduction rate of the Trp421His mutant was 6-fold larger than that of the wild type. The heme reduction rate with NADPH for the Trp421His mutant (0.09 min(-1)) was much lower than that (1.0 min(-1)) of the wild type. Taken together, it appears that Trp421 may be involved in inter-domain/inter-subunit electron transfer reactions.  相似文献   

8.
Hurshman AR  Marletta MA 《Biochemistry》2002,41(10):3439-3456
The heme domain (iNOS(heme)) of inducible nitric oxide synthase (iNOS) was expressed in Escherichia coli and purified to homogeneity. Characterization of the expressed iNOS(heme) shows it to behave in all respects like full-length iNOS. iNOS(heme) is isolated without bound pterin but can be readily reconstituted with (6R)-5,6,7,8-tetrahydro-L-biopterin (H(4)B) or other pterins. The reactivity of pterin-bound and pterin-free iNOS(heme) was examined, using sodium dithionite as the reductant. H(4)B-bound iNOS(heme) catalyzes both steps of the NOS reaction, hydroxylating arginine to N(G)-hydroxy-L-arginine (NHA) and oxidizing NHA to citrulline and *NO. Maximal product formation (0.93 plus minus 0.12 equiv of NHA from arginine and 0.83 plus minus 0.08 equiv of citrulline from NHA) requires the addition of 2 to 2.5 electron equiv. Full reduction of H(4)B-bound iNOS(heme) with dithionite also requires 2 to 2.5 electron equiv. These data together demonstrate that fully reduced H(4)B-bound iNOS(heme) is able to catalyze the formation of 1 equiv of product in the absence of electrons from dithionite. Arginine hydroxylation requires the presence of a bound, redox-active tetrahydropterin; pterin-free iNOS(heme) or iNOS(heme) reconstituted with a redox-inactive analogue, 6(R,S)-methyl-5-deaza-5,6,7,8-tetrahydropterin, did not form NHA under these conditions. H(4)B has an integral role in NHA oxidation as well. Pterin-free iNOS(heme) oxidizes NHA to citrulline, N(delta)-cyanoornithine, an unidentified amino acid, and NO(-). Maximal product formation (0.75 plus minus 0.01 equiv of amino acid products) requires the addition of 2 to 2.5 electron equiv, but reduction of pterin-free iNOS(heme) requires only 1 to 1.5 electron equiv, indicating that both electrons for the oxidation of NHA by pterin-free iNOS(heme) are derived from dithionite. These data provide strong evidence that H(4)B is involved in electron transfer in NOS catalysis.  相似文献   

9.
The neuronal NO synthase (nNOS) flavin domain, which has similar redox properties to those of NADPH-cytochrome P450 reductase (P450R), contains binding sites for calmodulin, FAD, FMN, and NADPH. The aim of this study is to elucidate the mechanism of activation of the flavin domain by calcium/calmodulin (Ca(2+)/CaM). In this study, we used the recombinant nNOS flavin domains, which include or delete the calmodulin (CaM)-binding site. The air-stable semiquinone of the nNOS flavin domains showed similar redox properties to the corresponding FAD-FMNH(&z.ccirf;) of P450R. In the absence or presence of Ca(2+)/CaM, the rates of reduction of an FAD-FMN pair by NADPH have been investigated at different wavelengths, 457, 504 and 590 nm by using a stopped-flow technique and a rapid scan spectrophotometry. The reduction of the oxidized enzyme (FAD-FMN) by NADPH proceeds by both one-electron equivalent and two-electron equivalent mechanisms, and the formation of semiquinone (increase of absorbance at 590 nm) was significantly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form of the enzyme was also rapidly reduced by NADPH. The results suggest that an intramolecular one-electron transfer between the two flavins is activated by the binding of Ca(2+)/CaM. The F(1)H(2), which is the fully reduced form of the air-stable semiquinone, can donate one electron to the electron acceptor, cytochrome c. The proposed mechanism of activation by Ca(2+)/CaM complex is discussed on the basis of that provided by P450R.  相似文献   

10.
Like that of the neuronal nitric oxide synthase (nNOS), the binding of Ca(2+)-bound calmodulin (CaM) also regulates the activity of the inducible isoform (iNOS). However, the role of each of the four Ca(2+)-binding sites of CaM in the activity of iNOS is unclear. Using a series of single-point mutants of Drosophila melanogaster CaM, the effect that mutating each of the Ca(2+)-binding sites plays in the transfer of electrons within iNOS has been examined. The same Glu (E) to Gln (Q) mutant series of CaM used previously [Stevens-Truss, R., Beckingham, K., and Marletta, M. A. (1997) Biochemistry 36, 12337-12345] to study the role of the Ca(2+)-binding sites in the activity of nNOS was used for these studies. We demonstrate here that activity of iNOS is dependent on Ca(2+) being bound to sites II (B2Q) and III (B3Q) of CaM. Nitric oxide ((*)NO) producing activity (as measured using the hemoglobin assay) of iNOS bound to the B2Q and B3Q CaMs was found to be 41 and 43% of the wild-type activity, respectively. The site I (B1Q) and site IV (B4Q) CaM mutants only minimally affected (*)NO production (95 and 90% of wild-type activity, respectively). These results suggest that NOS isoforms, although all possessing a prototypical CaM binding sequence and requiring CaM for activity, interact with CaM differently. Moreover, iNOS activation by CaM, like nNOS, is not dependent on Ca(2+) being bound to all four Ca(2+)-binding sites, but has specific and distinct requirements. This novel information, in addition to helping us understand NOS, should aid in our understanding of CaM target activation.  相似文献   

11.
In a continuing effort to unravel the structural basis for isoform-selective inhibition of nitric oxide synthase (NOS) by various inhibitors, we have determined the crystal structures of the nNOS and eNOS heme domain bound with two D-nitroarginine-containing dipeptide inhibitors, D-Lys-D-Arg(NO)2-NH(2) and D-Phe-D-Arg(NO)2-NH(2). These two dipeptide inhibitors exhibit similar binding modes in the two constitutive NOS isozymes, which is consistent with the similar binding affinities for the two isoforms as determined by K(i) measurements. The D-nitroarginine-containing dipeptide inhibitors are not distinguished by the amino acid difference between nNOS and eNOS (Asp 597 and Asn 368, respectively) which is key in controlling isoform selection for nNOS over eNOS observed for the L-nitroarginine-containing dipeptide inhibitors reported previously [Flinspach, M., et al. (2004) Nat. Struct. Mol. Biol. 11, 54-59]. The lack of a free alpha-amino group on the D-nitroarginine moiety makes the dipeptide inhibitor steer away from the amino acid binding pocket near the active site. This allows the inhibitor to extend into the solvent-accessible channel farther away from the active site, which enables the inhibitors to explore new isoform-specific enzyme-inhibitor interactions. This might be the structural basis for why these D-nitroarginine-containing inhibitors are selective for nNOS (or eNOS) over iNOS.  相似文献   

12.
Haque MM  Kenney C  Tejero J  Stuehr DJ 《The FEBS journal》2011,278(21):4055-4069
NADPH-dependent dual-flavin enzymes provide electrons in many redox reactions, although the mechanism responsible for regulating their electron flux remains unclear. We recently proposed a four-state kinetic model that links the electron flux through a dual-flavin enzyme to its rates of interflavin electron transfer and FMN domain conformational motion [Stuehr DJ et al. (2009) FEBS J276, 3959-3974]. In the present study, we ran computer simulations of the kinetic model to determine whether it could fit the experimentally-determined, pre-steady-state and steady-state traces of electron flux through the neuronal and endothelial NO synthase flavoproteins (reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, respectively) to cytochrome c. We found that the kinetic model accurately fitted the experimental data. The simulations gave estimates for the ensemble rates of interflavin electron transfer and FMN domain conformational motion in the reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, provided the minimum rate boundary values, and predicted the concentrations of the four enzyme species that cycle during catalysis. The findings of the present study suggest that the rates of interflavin electron transfer and FMN domain conformational motion are counterbalanced such that both processes may limit electron flux through the enzymes. Such counterbalancing would allow a robust electron flux at the same time as keeping the rates of interflavin electron transfer and FMN domain conformational motion set at relatively slow levels.  相似文献   

13.
Analyzing the active site topology and plasticity of nitric oxide synthase (NOS) and understanding enzyme-drug interactions are crucial for the development of potent, isoform-selective NOS inhibitors. A small hydrophobic pocket in the active site is identified in the bovine eNOS heme domain structures complexed with potent isothiourea inhibitors: seleno analogue of S-ethyl-isothiourea, S-isopropyl-isothiourea, and 2-aminothiazoline, respectively. These structures reveal the importance of nonpolar van der Waals contacts in addition to the well-known hydrogen bonding interactions between inhibitor and enzyme. The scaffold of a potent NOS inhibitor should be capable of donating hydrogen bonds to as well as making nonpolar contacts with amino acids in the NOS active site.  相似文献   

14.
Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated by-products of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yields electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These posttranslational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders.  相似文献   

15.
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) contributes to hepatic vascular homeostasis. The aim of this study was to examine whether delivery of an adenoviral vector encoding eNOS gene to liver affects vasomotor function in vivo and the mechanism of NO production in vitro. Rats were administered adenoviruses encoding beta-galactosidase (AdCMVLacZ) or eNOS (AdCMVeNOS) via tail vein injection and studied 1 wk later. In animals transduced with AdCMVLacZ, beta-galactosidase activity was increased in the liver, most prominently in hepatocytes. In AdCMVeNOS-transduced animals, eNOS protein levels and catalytic activity were significantly increased. Overexpression of eNOS diminished baseline perfusion pressure and constriction in response to the alpha(1)-agonist methoxamine in the perfused liver. Transduction of cultured hepatocytes with AdCMVeNOS resulted in the targeting of recombinant eNOS to a perinuclear distribution and binding with the NOS-activating protein heat shock protein 90. These events were associated with increased ionomycin-stimulated NO release. In summary, this is the first study to demonstrate successful delivery of the recombinant eNOS gene to liver in vivo and in vitro with ensuing NO production.  相似文献   

16.
Comparative CO photolysis kinetics studies on wild-type and autoregulatory (AR) insert-deletion mutant of rat nNOS holoenzyme were conducted to directly investigate the role of the unique AR insert in the catalytically significant FMN-heme intraprotein electron transfer (IET). Although the amplitude of the IET kinetic traces was decreased two- to three-fold, the AR deletion did not change the rate constant for the calmodulin-controlled IET. This suggests that the rate-limiting conversion of the electron-accepting state to a new electron-donating (output) state does not involve interactions with the AR insert, but that AR may stabilize the output state once it is formed.  相似文献   

17.
The nitric oxide synthases (NOSs) consist of a flavin-containing reductase domain, linked to a heme-containing oxygenase domain, by a calmodulin (CaM) binding sequence. The flavin-containing reductase domains of the NOS isoforms possess close sequence homology to NADPH-cytochrome P450 reductase (CPR). Additionally, the oxygenase domains catalyze monooxygenation of L-arginine through a cytochrome P450-like cysteine thiolate-liganded heme bound in the active site. With these considerations in mind, we conducted studies in an attempt to gain insight into the intermediates involved in flavoprotein-to-heme electron transfer in the NOSs. Static, steady-state, and stopped-flow kinetic studies indicated that nNOS must be reduced to a more than one-electron-reduced intermediate before efficient electron transfer can occur. Therefore, the possibility exists that the oxygenase domains of the NOS isoforms may receive their electrons from the reductase domains by a mechanism resembling the CPR-P450 interaction. Furthermore, the rate-limiting step in electron transfer appears to be the transfer of electrons from the flavoprotein to the oxygenase domain facilitated by the binding of CaM at increased intracellular Ca(2+) concentrations. Thus, modulation of electron transfer rates appears to be regulated at the level of the flavoprotein domains of the NOS isoforms.  相似文献   

18.
How 6R-tetrahydrobiopterin (H(4)B) participates in Arg hydroxylation as catalyzed by the nitric oxide synthases (NOSs) is a topic of current interest. Previous work with the oxygenase domain of inducible NOS (iNOSoxy) demonstrated that H(4)B radical formation is kinetically coupled to disappearance of an initial heme-dioxy intermediate and to Arg hydroxylation in a single turnover reaction run at 10 degrees C [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. Here we used 5-methyl-H(4)B to investigate how pterin structure influences radical formation and associated catalytic steps. In the presence of Arg, the heme-dioxy intermediate in 5-methyl-H(4)B-bound iNOSoxy reacted at a rate of 35 s(-)(1), which is 3-fold faster than with H(4)B. This was coupled to a faster rate of 5-methyl-H(4)B radical formation (40 vs 12.5 s(-)(1)) and to a faster and more productive Arg hydroxylation. The EPR spectrum of the enzyme-bound 5-methyl-H(4)B radical had different hyperfine structure than the bound H(4)B radical and exhibited a 3-fold longer half-life after its formation. A crystal structure of 5-methyl-H(4)B-bound iNOSoxy revealed that there are minimal changes in conformation of the bound pterin or in its interactions with the protein as compared to H(4)B. Together, we conclude the following: (1) The rate of heme-dioxy reduction is linked to pterin radical formation and is sensitive to pterin structure. (2) Faster heme-dioxy reduction increases the efficiency of Arg hydroxylation but still remains rate limiting for the reaction. (3) The 5-methyl group influences heme-dioxy reduction by altering the electronic properties of the pterin rather than changing protein structure or interactions. (4) Faster electron transfer from 5-methyl-H(4)B may be due to increased radical stability afforded by the N-5 methyl group.  相似文献   

19.
We studied steps that make up the initial and steady-state phases of nitric oxide (NO) synthesis to understand how activity of bovine endothelial NO synthase (eNOS) is regulated. Stopped-flow analysis of NADPH-dependent flavin reduction showed the rate increased from 0. 13 to 86 s(-1) upon calmodulin binding, but this supported slow heme reduction in the presence of either Arg or N(omega)-hydroxy-l-arginine (0.005 and 0.014 s(-1), respectively, at 10 degrees C). O(2) binding to ferrous eNOS generated a transient ferrous dioxy species (Soret peak at 427 nm) whose formation and decay kinetics indicate it can participate in NO synthesis. The kinetics of heme-NO complex formation were characterized under anaerobic conditions and during the initial phase of NO synthesis. During catalysis heme-NO complex formation required buildup of relatively high solution NO concentrations (>50 nm), which were easily achieved with N(omega)-hydroxy-l-arginine but not with Arg as substrate. Heme-NO complex formation caused eNOS NADPH oxidation and citrulline synthesis to decrease 3-fold and the apparent K(m) for O(2) to increase 6-fold. Our main conclusions are: 1) The slow steady-state rate of NO synthesis by eNOS is primarily because of slow electron transfer from its reductase domain to the heme, rather than heme-NO complex formation or other aspects of catalysis. 2) eNOS forms relatively little heme-NO complex during NO synthesis from Arg, implying NO feedback inhibition has a minimal role. These properties distinguish eNOS from the other NOS isoforms and provide a foundation to better understand its role in physiology and pathology.  相似文献   

20.
Nitric oxide (NO) is a major regulator of the cardiovascular system. However, the effects of endothelial nitric oxide synthase (eNOS) gene polymorphisms or haplotypes on the circulating concentrations of nitrite (a sensitive marker of NO formation) and cGMP are unknown. Here we examined the effects of eNOS polymorphisms in the promoter region (T-786C), in exon 7 (Glu298Asp), and in intron 4 (4b/4a) and eNOS haplotypes on the plasma levels of nitrite and cGMP. We hypothesized that eNOS haplotypes could have a major impact on NO formation. We genotyped 142 healthy subjects by PCR-RFLP. To assess NO formation, the plasma concentrations of nitrite and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Haplotypes were inferred using the PHASE 2.1 program. No significant differences were found in age, body mass index, systolic and diastolic arterial blood pressure, heart rate, total cholesterol, triglycerides, cGMP, or nitrite among the genotype groups for the three polymorphisms studied here (all p>0.05). Interestingly, the C-4b-Glu haplotype was associated with lower plasma nitrite concentrations than those found in the other haplotype groups (p<0.05), but not with different cGMP levels (p>0.05). These findings suggest that eNOS gene variants combined within a specific haplotype modulate NO formation, although individual eNOS polymorphisms probably do not have major effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号