首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.  相似文献   

2.
Unsteady aerodynamic characteristics of a seagull wing in level flight are investigated using a boundary element method.Anew no-penetration boundary condition is imposed on the surface of the wing by considering its deformation.The geometry andkinematics of the seagull wing are reproduced using the functions and data in the previously published literature.The proposedmethod is validated by comparing the computed results with the published data in the literature.The unsteady aerodynamicscharacteristics of the seagull wing are investigated by changing flapping frequency and advance ratio.It is found that the peakvalues of aerodynamic coefficients increase with the flapping frequency.The thrust and drag generations are complicatedfunctions of frequency and wing stroke motions.The lift is inversely proportional to the advance ratio.The effects of severalflapping modes on the lift and induced drag(or thrust)generation are also investigated.Among three single modes(flapping,folding and lead & lag),flapping generates the largest lift and can produce thrust alone.For three combined modes,both flapping/foldingand flapping/lead & lag can produce lift and thrust larger than the flapping-alone mode can.Folding is shown toincrease thrust when combined with flapping,whereas lead & lag has an effect of increasing the lift when also combined withflapping.When three modes are combined together,the bird can obtain the largest lift among the investigated modes.Eventhough the proposed method is limited to the inviscid flow assumption,it is believed that this method can be used to the designof flapping micro aerial vehicle.  相似文献   

3.
In previous work,we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces.This method is referred to as Unsteady Blade Element Theory (UBET).A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (>30 Hz) could not be found in literature survey.In this paper,UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method.We investigated three three-dimensional (3D) wing kinematics that produce negative,zero,and positive aerodynamic pitching moments.For all cases,the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends.The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%,respectively.Therefore,UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV.However,the differences in average wing drags and pitching moments about the feather axis were more than 20%.Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis,UBET needs further improvement for higher accuracy.  相似文献   

4.
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s?1, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.  相似文献   

5.
In this work, we first present a method to experimentally capture the free flight of a beetle (Allomyrina dichotoma), which is not an active flyer. The beetle is suspended in the air by a hanger to induce the free flight. This flight is filmed using two high-speed cameras. The high speed images are then examined to obtain flapping angle, flapping frequency, and wing rotation of the hind wing. The acquired data of beetle free flight are used to design a motor-driven flapper that can approximately mimic the beetle in terms of size, flapping frequency and wing kinematics. The flapper can create a large flapping angle over 140° with a large passive wing rotation angle. Even though the flapping frequency of the flapper is not high enough compared to that of a real beetle due to the limited motor torque, the flapper could produce positive average vertical force. This work will provide important experience for future development of a beetle-mimicking Flapping-Wing Micro Air Vehicle (FWMAV).  相似文献   

6.
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.  相似文献   

7.
Flight in flies results from a feedback cascade in which the animal converts mechanical power produced by the flight musculature into aerodynamic forces. A major goal of flight research is to understand the functional significance of the various components in this cascade ranging from the generation of the neural code, the control of muscle mechanical power output, wing kinematics and unsteady aerodynamic mechanisms. Here, I attempted to draw a broad outline on fluid dynamic mechanisms found in flapping insect wings such as leading edge vorticity, rotational circulation and wake capture momentum transfer, as well as on the constraints of flight force control by the neuromuscular system of the fruit fly Drosophila. This system-level perspective on muscle control and aerodynamic mechanisms is thought to be a fundamental bridge in any attempt to link the function and performance of the various flight components with their particular role for wing motion and aerodynamic control in the behaving animal. Eventually, this research might facilitate the development of man-made biomimetic autonomous micro air vehicles using flapping wing motion for propulsion that are currently under construction by engineers.  相似文献   

8.
Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.  相似文献   

9.
Aerodynamic characteristic of the beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and hind wings, is numerically investigated. Based on the experimental results of wing kinematics, two-dimensional (2D) and three-dimensional (3D) computational fluid dynamic simulations were carried out to reveal aerodynamic performance of the hind wing. The roles of the spiral Leading Edge Vortex (LEV) and the spanwise flow were clarified by comparing 2D and 3D simulations. Mainly due to pitching down of chord line during downstroke in highly inclined stroke plane, relatively high averaged thrust was produced in the free forward flight of the beetle. The effects of the local corrugation and the camber variation were also investigated for the beetle's hind wings. Our results show that the camber variation plays a significant role in improving both lift and thrust in the flapping. On the other hand, the local corrugation pattern has no significant effect on the aerodynamic force due to large angle of attack during flapping.  相似文献   

10.
Stability is essential to flying and is usually assumed to be especially problematic in flapping flight. If so, problems of stability may have presented a particular hurdle to the evolution of flapping flight. In spite of this, the stability of flapping flight has never been properly analysed. Here we use quasi-static and blade element approaches to analyse the stability provided by a flapping wing. By using reduced order approximations to the natural modes of motion, we show that wing beat frequencies are generally high enough compared to the natural frequencies of motion for a quasi-static approach to be valid as a first approximation. Contrary to expectations, we find that there is noting inherently destabilizing about flapping: beating the wings faster simply amplifies any existing stability or instability, and flapping can even enhance stability compared to gliding at the same air speed. This suggests that aerodynamic stability may not have been a particular hurdle in the evolution of flapping flight. Hovering animals, like hovering helicopters, are predicted to possess neutral static stability. Flapping animals, like fixed wing aircraft, are predicted to be stable in forward flight if the mean flight force acts above and/or behind the centre of gravity. In this case, the downstroke will always be stabilizing. The stabilizing contribution may be diminished by an active upstroke with a low advance ratio and more horizontal stroke plane; other forms of the upstroke may make a small positive contribution to stability. An active upstroke could, therefore, be used to lower stability and enhance manoeuvrability. Translatory mechanisms of unsteady lift production are predicted to amplify the stability predicted by a quasi-static analysis. Non-translatory mechanisms will make little or no contribution to stability. This may be one reason why flies, and other animals which rely upon non-translatory aerodynamic mechanisms, often appear inherently unstable.  相似文献   

11.
Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18 ± 15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p = 0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged.  相似文献   

12.
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.  相似文献   

13.
In recent decades, the take-off mechanisms of flying animals have received much attention in insect flight initiation. Most of previous works have focused on the jumping mechanism, which is the most common take-off mechanism found in flying animals. Here, we presented that the rhinoceros beetle, Trypoxylus dichotomus, takes offwithout jumping. In this study, we used 3-Dimensional (3D) high-speed video techniques to quantitatively analyze the wings and body kinematics during the initiation periods of flight. The details of the flapping angle, angle of attack of the wings and the roll, pitch and yaw angles of the body were investigated to understand the mechanism of take-off in T. dichotomus. The beetle took off gradually with a small velocity and small acceleration. The body kinematic analyses showed that the beetle exhibited stable take-off. To generate high lift force, the beetle modulated its hind wing to control the angle of attack; the angle of attack was large during the upstroke and small during the downstroke. The legs of beetle did not contract and strongly release like other insects. The hind wing could be con- sidered as a main source of lift for heavy beetle.  相似文献   

14.
We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional computational fluiddynamics simulations using ANSYS-CFX software.Our first approach was a quasi-static study that considered the effect ofinduced flapping flow due to the flapping motion of the fore-wings (elytra) at a frequency of around 30 Hz to 40 Hz.The dihedralangle was varied to represent flapping motion during the upstroke and downstroke.We found that an elytron producespositive lift at 0° geometric angle of attack,negative lift during the upstroke,and always produces drag during both the upstrokeand downstroke.We also found that the lift coefficient of an elytron does not drop even at a very high geometric angle of attack.For a beetle with a body weight of 5 g,based on the quasi-static method,the fore-wings (elytra) can produce lift of less than 1%of its body weight.  相似文献   

15.
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.  相似文献   

16.
The aerodynamic characteristics of the Coleopteran beetle species Epilachna quadricollis, a species with flexible hind wings and stiff elytra (fore wings), are investigated in terms of hovering flight. The flapping wing kinematics of the Coleopteran insect are modeled through experimental observations with a digital high-speed camera and curve fitting from an ideal harmonic kinematics model. This model numerically simulates flight by estimating a cross section of the wing as a two-dimensional elliptical plane. There is currently no detailed study on the role of the elytron or how the elytron-hind wing interaction affects aerodynamic performance. In the case of hovering flight, the relatively small vertical or horizontal forces generated by the elytron suggest that the elytron makes no significant contribution to aerodynamic force.  相似文献   

17.
Our understanding of the aerodynamics of flapping animal flightis largely based on the quasi-steady assumption: the instantaneousaerodynamic forces on a flapping wing are assumed to be identicalwith those which the wing would experience in steady motionat the same instantaneous speed and angle of attack. Researchup to a decade ago showed that the assumption was sufficientto explain the flight of the vast majority of animals, but didnot rule out the possibility that alternative aerodynamic mechanismswere employed instead. Results are presented here for four hoveringanimals for which the quasi-steady explanation fails. Theseanimals apparently use lift mechanisms that rely on vorticesshed during the rotational motion of the wing at either endof the wingbeat. The postulated rotational lift mechanisms shouldalso apply to other hovering animals, even though the quasi-steadyassumption could explain their flight. Measurements of the wingforces produced by locusts cast doubt on the validity of thequasi-steady assumption for fast forward flight as well.  相似文献   

18.
Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.  相似文献   

19.
Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-to-muscle-transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight.  相似文献   

20.
A physical model for a micro air vehicle with Flapping Rotary Wings (FRW) is investigated by measuring the wing kinematics in trim conditions and computing the corresponding aerodynamic force using computational fluid dynamics.In order to capture the motion image and reconstruct the positions and orientations of the wing,the photogrammetric method is adopted and a method for automated recognition of the marked points is developed.The characteristics of the realistic wing kinematics are presented.The results show that the non-dimensional rotating speed is a linear function of non-dimensional flapping frequency regardless of the initial angles of attack.Moreover,the effects of wing kinematics on aerodynamic force production and the underlying mechanism are analyzed.The results show that the wing passive pitching caused by elastic deformation can significantly enhance lift production.The Strouhal number of the FRW is much higher than that of general flapping wings,indicating the stronger unsteadiness of flows in FRW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号